Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631774

RESUMO

BACKGROUND: "Ricominciare" is a single-center, prospective, pre-/post-intervention pilot study aimed at verifying the feasibility and safety of the ARC Intellicare (ARC) system (an artificial intelligence-powered and inertial motion unit-based mobile platform) in the home rehabilitation of people with disabilities due to respiratory or neurological diseases. METHODS: People with Parkinson's disease (pwPD) or post-COVID-19 condition (COV19) and an indication for exercise or home rehabilitation to optimize motor and respiratory function were enrolled. They underwent training for ARC usage and received an ARC unit to be used independently at home for 4 weeks, for 45 min 5 days/week sessions of respiratory and motor patient-tailored rehabilitation. ARC allows for exercise monitoring thanks to data from five IMU sensors, processed by an AI proprietary library to provide (i) patients with real-time feedback and (ii) therapists with information on patient adherence to the prescribed therapy. Usability (System Usability Scale, SUS), adherence, and adverse events were primary study outcomes. Modified Barthel Index (mBI), Barthel Dyspnea Index (BaDI), 2-Minute Walking Test (2MWT), Brief Fatigue Inventory (BFI), Beck Depression or Anxiety Inventory (BDI, BAI), and quality of life (EQ-5D) were also monitored pre- and post-treatment. RESULTS: A total of 21 out of 23 eligible patients were enrolled and completed the study: 11 COV19 and 10 pwPD. The mean total SUS score was 77/100. The median patients' adherence to exercise prescriptions was 80%. Clinical outcome measures (BaDI, 2MWT distance, BFI; BAI, BDI, and EQ-5D) improved significantly; no side effects were reported. CONCLUSION: ARC is usable and safe for home rehabilitation. Preliminary data suggest promising results on the effectiveness in subjects with post-COVID condition or Parkinson's disease.


Assuntos
COVID-19 , Pessoas com Deficiência , Doença de Parkinson , Telerreabilitação , Humanos , Projetos Piloto , Inteligência Artificial , Estudos Prospectivos , Qualidade de Vida
2.
IEEE Trans Neural Syst Rehabil Eng ; 28(1): 152-164, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581086

RESUMO

Overhead work is a frequent cause of shoulder work-related musculoskeletal disorders. Exoskeletons offering arm support have the potential to reduce shoulder strain, without requiring large scale reorganization of the workspace. Assessment of such systems however requires to take multiple factors into consideration. This paper presents a thorough in-lab assessment of PAEXO, a novel passive exoskeleton for arm support during overhead work. A list of evaluation criteria and associated performance metrics is proposed to cover both objective and subjective effects of the exoskeleton, on the user and on the task being performed. These metrics are measured during a lab study, where 12 participants perform an overhead pointing task with and without the exoskeleton, while their physical, physiological and psychological states are monitored. Results show that using PAEXO reduces shoulder physical strain as well as global physiological strain, without increasing low back strain nor degrading balance. These positive effects are achieved without degrading task performance. Importantly, participants' opinions of PAEXO are positive, in agreement with the objective measures. Thus, PAEXO seems a promising solution to help prevent shoulder injuries and diseases among overhead workers, without negatively impacting productivity.


Assuntos
Exoesqueleto Energizado , Doenças Musculoesqueléticas/reabilitação , Desenho de Prótese , Extremidade Superior , Braço , Traumatismos do Braço/prevenção & controle , Fenômenos Biomecânicos , Eletromiografia , Exoesqueleto Energizado/efeitos adversos , Voluntários Saudáveis , Humanos , Masculino , Monitorização Neurofisiológica , Aceitação pelo Paciente de Cuidados de Saúde , Desempenho Psicomotor , Carga de Trabalho , Adulto Jovem
3.
PLoS One ; 12(10): e0186132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023548

RESUMO

Hand prostheses controlled by surface electromyography are promising due to the non-invasive approach and the control capabilities offered by machine learning. Nevertheless, dexterous prostheses are still scarcely spread due to control difficulties, low robustness and often prohibitive costs. Several sEMG acquisition setups are now available, ranging in terms of costs between a few hundred and several thousand dollars. The objective of this paper is the relative comparison of six acquisition setups on an identical hand movement classification task, in order to help the researchers to choose the proper acquisition setup for their requirements. The acquisition setups are based on four different sEMG electrodes (including Otto Bock, Delsys Trigno, Cometa Wave + Dormo ECG and two Thalmic Myo armbands) and they were used to record more than 50 hand movements from intact subjects with a standardized acquisition protocol. The relative performance of the six sEMG acquisition setups is compared on 41 identical hand movements with a standardized feature extraction and data analysis pipeline aimed at performing hand movement classification. Comparable classification results are obtained with three acquisition setups including the Delsys Trigno, the Cometa Wave and the affordable setup composed of two Myo armbands. The results suggest that practical sEMG tests can be performed even when costs are relevant (e.g. in small laboratories, developing countries or use by children). All the presented datasets can be used for offline tests and their quality can easily be compared as the data sets are publicly available.


Assuntos
Acelerometria/instrumentação , Eletromiografia/instrumentação , Mãos/fisiologia , Movimento , Acelerometria/métodos , Adulto , Amputados/reabilitação , Membros Artificiais , Eletrodos , Eletromiografia/métodos , Feminino , Humanos , Masculino , Máquina de Vetores de Suporte , Adulto Jovem
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3611-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26737074

RESUMO

A main challenge in the development of robotic rehabilitation devices is how to understand patient's intentions and adapt to his/her current neuro-physiological capabilities. A promising approach is the use of electromyographic (EMG) signals which reflect the actual activation of the muscles during the movement and, thus, are a direct representation of user's movement intention. However, EMGs acquisition is a complex procedure, requiring trained therapists and, therefore, solutions based on EMG signals are not easily integrable in devices for home-rehabilitation. This work investigates the effectiveness of a subject- and task-specific EMG model in estimating EMG signals in cyclic plantar-dorsiflexion movements. Then, the outputs of this model are used to drive CEINMS toolbox, a state-of-the-art EMG-driven neuromusculoskeletal model able to predict joint torques and muscle forces. Preliminary results show that the proposed methodology preserves the accuracy of the estimates values.


Assuntos
Eletromiografia , Modelos Biológicos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Humanos , Reabilitação , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA