Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Metab Brain Dis ; 38(3): 873-919, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807081

RESUMO

Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, ß-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.


Assuntos
MicroRNAs , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Biomarcadores
2.
Medicina (Kaunas) ; 59(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36676721

RESUMO

Background and Objectives: Obesity is a major health concern worldwide. Many studies emphasize the important role of brain-derived neurotrophic factor (BDNF) in regulating appetite and body weight. We aimed to investigate the association between BDNF protein serum levels and body mass index (BMI). Materials and Methods: We conducted a cross-sectional study among 108 healthy adult participants divided into six categories depending on their body mass index (BMI). The ages of the participants ranged between 21 to 45 years. The BDNF serum level was measured using the enzyme-linked immunosorbent assay (ELISA) technique. Results: A Kruskal−Wallis test showed a significant difference in BDNF between the different BMI categories, χ2(2) = 24.201, p < 0.001. Our data also showed that BDNF levels were significantly lower in people with obesity classes II and III than those of normal weight (p < 0.05). The Spearman rank correlation test was statistically significant with negative correlations between the BMI and BDNF (r) = −0.478, (p < 0.01). Moreover, we observed a negative dose-dependent relationship pattern between BMI categories and the levels of circulating BDNF protein. Conclusions: In this study, our data support the hypothesis that low serum levels of BDNF are associated with high BMI and obesity in Saudi adults.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Obesidade , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Índice de Massa Corporal , Estudos Transversais , Peso Corporal
4.
Nanomedicine ; 10(6): 1311-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24602605

RESUMO

PLA-PEG [poly(lactic acid)-poly (ethylene glycol)], a biodegradable copolymer, is underexploited for vaccine delivery although it exhibits enhanced biocompatibility and slow release immune-potentiating properties. We document here successful encapsulation of M278, a Chlamydia trachomatis MOMP (major outer-membrane protein) peptide, within PLA-PEG nanoparticles by size (~73-100nm), zeta potential (-16 mV), smooth morphology, encapsulation efficiency (~60%), slow release pattern, and non-toxicity to macrophages. Immunization of mice with encapsulated M278 elicited higher M278-specific T-cell cytokines [Th1 (IFN-γ, IL-2), Th17 (IL-17)] and antibodies [Th1 (IgG2a), Th2 (IgG1, IgG2b)] compared to bare M278. Encapsulated-M278 mouse serum inhibited Chlamydia infectivity of macrophages, with a concomitant transcriptional down-regulation of MOMP, its cognate TLR2 and CD80 co-stimulatory molecule. Collectively, encapsulated M278 potentiated crucial adaptive immune responses, which are required by a vaccine candidate for protective immunity against Chlamydia. Our data highlight PLA-PEG's potential for vaccines, which resides in its slow release and potentiating effects to bolster immune responses. FROM THE CLINICAL EDITOR: This study highlights the potential of a PLA-PEG-based nanoparticle formulation containing a major outer membrane protein of chlamydia trachomatis in inducing a sustained enhanced immune response, paving the way to the development of a vaccination strategy against this infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Infecções por Chlamydia/prevenção & controle , Chlamydia trachomatis/imunologia , Portadores de Fármacos/química , Lactatos/química , Nanopartículas/química , Polietilenoglicóis/química , Imunidade Adaptativa , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Infecções por Chlamydia/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia
5.
Nanotechnology ; 23(32): 325101, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22824940

RESUMO

Development of a Chlamydia trachomatis vaccine has been a formidable task partly because of an ineffective delivery system. Our laboratory has generated a recombinant peptide of C. trachomatis major outer membrane protein (MOMP) (rMOMP-187) and demonstrated that it induced at 20 µg ml(-1) maximal interleukin (IL)-6 and IL-12p40 Th1 cytokines in mouse J774 macrophages. In a continuous pursuit of a C. trachomatis effective vaccine-delivery system, we encapsulated rMOMP-187 in poly(d,l-lactic-co-glycolic acid) (PLGA, 85:15 PLA/PGA ratio) to serve as a nanovaccine candidate. Physiochemical characterizations were assessed by Fourier transform-infrared spectroscopy, atomic force microscopy, Zetasizer, Zeta potential, transmission electron microcopy and differential scanning calorimetry. The encapsulated rMOMP-187 was small (∼200 nm) with an apparently smooth uniform oval structure, thermally stable (54 °C), negatively charged ( - 27.00 mV) and exhibited minimal toxicity at concentrations <250 µg ml (-1) to eukaryotic cells (>95% viable cells) over a 24-72 h period. We achieved a high encapsulation efficiency of rMOMP-187 (∼98%) in PLGA, a loading peptide capacity of 2.7% and a slow release of the encapsulated peptide. Stimulation of J774 macrophages with a concentration as low as 1 µg ml (-1) of encapsulated rMOMP-187 evoked high production levels of the Th1 cytokines IL-6 (874 pg ml(-1)) and IL-12p40 (674 pg ml(-1)) as well as nitric oxide (8 µM) at 24 h post-stimulation, and in a dose-response and time-kinetics manner. Our data indicate the successful encapsulation and characterization of rMOMP-187 in PLGA and, more importantly, that PLGA enhanced the capacity of the peptide to induce Th1 cytokines and NO in vitro. These findings make this nanovaccine an attractive candidate in pursuit of an efficacious vaccine against C. trachomatis.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Chlamydia trachomatis/metabolismo , Portadores de Fármacos/química , Ácido Láctico/química , Nanopartículas/química , Peptídeos/química , Ácido Poliglicólico/química , Análise de Variância , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/farmacocinética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chlamydia trachomatis/química , Relação Dose-Resposta Imunológica , Portadores de Fármacos/farmacologia , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Ácido Láctico/farmacologia , Camundongos , Microscopia de Fluorescência , Óxido Nítrico/metabolismo , Tamanho da Partícula , Peptídeos/imunologia , Peptídeos/farmacocinética , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacocinética , Vacinas Sintéticas
6.
Mediators Inflamm ; 2012: 520174, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22529524

RESUMO

Chlamydia trachomatis infects macrophages and epithelial cells evoking acute and chronic inflammatory conditions, which, if not controlled, may put patients at risk for major health issues such as pelvic inflammatory disease, chronic abdominal pain, and infertility. Here we hypothesized that IL-10, with anti-inflammatory properties, will inhibit inflammatory mediators that are produced by innate immune cells exposed to C. trachomatis. We used human epithelial (HeLa) cells and mouse J774 macrophages as target cells along with live and UV-inactivated C. trachomatis mouse pneumonitis (MoPn) as stimulants. Confocal microscopy employing an anti-Chlamydia antibody confirmed cells infectivity by day 1, which persisted up to day 3. Kinetics studies revealed that live C. trachomatis induced TNF, IL-6, and IL-8, as a function of time, with day-2 infection inducing the highest cytokine levels. Exogenous IL-10 inhibited TNF, IL-6, and IL-8 as secreted by day-2 infected cells. Similarly, IL-10 diminished cytokine levels as produced by macrophages exposed to UV-inactivated Chlamydia, suggesting the IL-10-mediated inhibition of cytokines is not restricted to live organisms. Our data imply that IL-10 is an important regulator of the initial inflammatory response to C. trachomatis infection and that further investigations be made into IL-10 use to combat inflammation induced by this bacterium.


Assuntos
Chlamydia trachomatis/metabolismo , Células Epiteliais/citologia , Interleucina-10/metabolismo , Macrófagos/citologia , Animais , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Células HeLa , Humanos , Inflamação , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos , Microscopia Confocal/métodos , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Raios Ultravioleta
7.
J Basic Clin Physiol Pharmacol ; 33(6): 779-787, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856088

RESUMO

OBJECTIVES: At present, diabetes is one of the leading causes of mortality across the world. It was hypothesized that muscle mass could have a significant influence on blood glucose level and this corelation if established successfully could pave way for novel treatment modalities for type 2 diabetes mellitus (T2DM). In the present study, the association between muscle mass and blood glucose level was examined in a healthy population who was not having T2DM at baseline and was undergoing a regular course of exercise. METHODS: The clinical study was performed involving 53 healthy male populations between 10 and 60 years of age. The participants were sampled in accordance with the quantitative experimental study design, using nonprobability sampling techniques. The independent variable measured among the subjects included muscle mass and blood glucose level, using bioelectrical impedance and a simple glucometer respectively. Subgroup analysis amongst different substantial parameters including body mass index (BMI), myostatin inhibitor usage, and age factor that could affect the muscle mass and glucose level correlation were also studied simultaneously. RESULTS: The study findings demonstrated a negative correlation between muscle mass and glucose utilization levels. There was a significant difference in the mean muscle mass of the participants which was 36.2453, and the mean glucose utilization level which was 15.1493%. Pearson correlation between the muscle mass and percentage of glucose utilization of the participants indicated a significant difference (since p-value <0.05) between these two studied parameters. CONCLUSIONS: The study finding suggests an inverse association of the skeletal muscle mass with blood glucose level which encourages the implication of muscle-building exercises as the preventive measure for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Masculino , Diabetes Mellitus Tipo 2/epidemiologia , Glicemia/análise , Índice de Massa Corporal , Músculo Esquelético , Glucose
8.
Polymers (Basel) ; 14(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36236089

RESUMO

Nanogel is a promising drug delivery approach to improve the pharmacokinetics and pharmacodynamic prospect of phytopharmaceuticals. In the present review, phytopharmaceuticals with astonishing therapeutic utilities are being explored. However, their in vivo delivery is challenging, owing to poor biopharmaceutical attributes that impact their drug release profile, skin penetration, and the reach of optimal therapeutic concentrations to the target site. Nanogel and its advanced version in the form of nanoemulgel (oil-in-water nanoemulsion integrated gel matrix) offer better therapeutic prospects than other conventional counterparts for improving the biopharmaceutical attributes and thus therapeutic efficacy of phytopharmaceuticals. Nanoemulgel-loaded phytopharmaceuticals could substantially improve permeation behavior across skin barriers, subsequently enhancing the delivery and therapeutic effectiveness of the bioactive compound. Furthermore, the thixotropic characteristics of polymeric hydrogel utilized in the fabrication of nanogel/nanoemulgel-based drug delivery systems have also imparted improvements in the biopharmaceutical attributes of loaded phytopharmaceuticals. This formulation approach is about to be rife in the coming decades. Thus, the current review throws light on the recent studies demonstrating the role of nanogels in enhancing the delivery of bioactive compounds for treating various disease conditions and the challenges faced in their clinical translation.

9.
Curr Pharm Des ; 26(11): 1216-1231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32188379

RESUMO

Nanomedicine has revolutionized the field of cancer detection and treatment by enabling the delivery of imaging agents and therapeutics into cancer cells. Cancer diagnostic and therapeutic agents can be either encapsulated or conjugated to nanosystems and accessed to the tumor environment through the passive targeting approach (EPR effect) of the designed nanomedicine. It may also actively target the tumor exploiting conjugation of targeting moiety (like antibody, peptides, vitamins, and hormones) to the surface of the nanoparticulate system. Different diagnostic agents (like contrast agents, radionuclide probes and fluorescent dyes) are conjugated with the multifunctional nanoparticulate system to achieve simultaneous cancer detection along with targeted therapy. Nowadays targeted drug delivery, as well as the early cancer diagnosis is a key research area where nanomedicine is playing a crucial role. This review encompasses the significant recent advancements in drug delivery as well as molecular imaging and diagnosis of cancer exploiting polymer-based, lipid-based and inorganic nanoparticulate systems.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico
10.
Int J Nanomedicine ; 8: 2085-99, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785233

RESUMO

We recently demonstrated by in vitro experiments that PLGA (poly D, L-lactide-co-glycolide) potentiates T helper 1 (Th1) immune responses induced by a peptide derived from the recombinant major outer membrane protein (rMOMP) of Chlamydia trachomatis, and may be a promising vaccine delivery system. Herein we evaluated the immune-potentiating potential of PLGA by encapsulating the full-length rMOMP (PLGA-rMOMP), characterizing it in vitro, and investigating its immunogenicity in vivo. Our hypothesis was that PLGA-rMOMP triggers Th1 immune responses in mice, which are desirable prerequisites for a C. trachomatis candidate nanovaccine. Physical-structural characterizations of PLGA-rMOMP revealed its size (approximately 272 nm), zeta potential (-14.30 mV), apparent spherical smooth morphology, and continuous slow release pattern. PLGA potentiated the ability of encapsulated rMOMP to trigger production of cytokines and chemokines by mouse J774 macrophages. Flow cytometric analyses revealed that spleen cells from BALB/c mice immunized with PLGA-rMOMP had elevated numbers of CD4+ and CD8+ T cell subsets, and secreted more rMOMP-specific interferon-gamma (Th1) and interleukin (IL)-12p40 (Th1/Th17) than IL-4 and IL-10 (Th2) cytokines. PLGA-rMOMP-immunized mice produced higher serum immunoglobulin (Ig)G and IgG2a (Th1) than IgG1 (Th2) rMOMP-specific antibodies. Notably, sera from PLGA-rMOMP-immunized mice had a 64-fold higher Th1 than Th2 antibody titer, whereas mice immunized with rMOMP in Freund's adjuvant had only a four-fold higher Th1 than Th2 antibody titer, suggesting primarily induction of a Th1 antibody response in PLGA-rMOMP-immunized mice. Our data underscore PLGA as an effective delivery system for a C. trachomatis vaccine. The capacity of PLGA-rMOMP to trigger primarily Th1 immune responses in mice promotes it as a highly desirable candidate nanovaccine against C. trachomatis.


Assuntos
Vacinas Bacterianas/imunologia , Chlamydia trachomatis/imunologia , Nanopartículas/química , Porinas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/química , Vacinas Bacterianas/farmacocinética , Linhagem Celular , Quimiocinas/análise , Quimiocinas/metabolismo , Citocinas/análise , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Ácido Láctico/química , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porinas/química , Porinas/farmacocinética , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacocinética , Células Th1 , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/farmacocinética
11.
Physiol Behav ; 98(1-2): 147-55, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19460393

RESUMO

Mammals use chemical cues to coordinate social and reproductive behaviors. Chemical cues are detected by the VNO organ (VNO), which is a cartilage-encased elongated organ associated with the vomer bone in the rostral nasal cavity. The resident intruder paradigm was utilized to examine the ability of saliva and its feeder exocrine glands, the submaxillary, parotid, and sublingual glands to mediate aggression in mice. Saliva and extracts from submaxillary and parotid glands, but not extracts from sublingual glands of male CD-1 mice, induced a greater number of attacks and lower latencies to sniff and attack (p<0.05) and significantly increased IP(3) production (p<0.05) versus vehicle (PBS) in CD-1 male mice VNO. We further show that CD-1 male mouse saliva and submaxillary gland extract induced significantly more attacks and a lower latency to attack in lactating female CD-1 mice and produced significantly more inositol triphosphate (IP(3)), indicative of phospholipase C(beta) signaling which mediates pheromonal activity, in CD-1 female VNO compared to PBS. Castrated CD-1 male mouse saliva, and exocrine gland extracts induced significantly less IP(3) production in male VNO and less aggression by CD-1 males and lactating females compared to responses to normal CD-1 male mouse saliva and gland extracts. Thus, chemical cues present in saliva, submaxillary and parotid glands of CD-1 male mice are capable of stimulating aggression in male and female congenic mice which are correlated with significant production of IP(3) in the VNO. Additionally, these stimulations of aggression and IP(3) production are shown to be androgen-dependent.


Assuntos
Agressão/efeitos dos fármacos , Inositol 1,4,5-Trifosfato/biossíntese , Glândulas Salivares/fisiologia , Extratos de Tecidos/farmacologia , Órgão Vomeronasal/metabolismo , Animais , Feminino , Lactação/psicologia , Masculino , Comportamento Materno/efeitos dos fármacos , Membranas/efeitos dos fármacos , Camundongos , Ovariectomia , Glândula Parótida/fisiologia , Saliva/química , Saliva/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Glândula Submandibular/fisiologia , Órgão Vomeronasal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA