Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 23(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941841

RESUMO

The bromodomain containing protein 4 (BRD4) recognizes acetylated histone proteins and plays numerous roles in the progression of a wide range of cancers, due to which it is under intense investigation as a novel anti-cancer drug target. In the present study, we performed three-dimensional quantitative structure activity relationship (3D-QSAR) molecular modeling on a series of 60 inhibitors of BRD4 protein using ligand- and structure-based alignment and different partial charges assignment methods by employing comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches. The developed models were validated using various statistical methods, including non-cross validated correlation coefficient (r²), leave-one-out (LOO) cross validated correlation coefficient (q²), bootstrapping, and Fisher's randomization test. The highly reliable and predictive CoMFA (q² = 0.569, r² = 0.979) and CoMSIA (q² = 0.500, r² = 0.982) models were obtained from a structure-based 3D-QSAR approach using Merck molecular force field (MMFF94). The best models demonstrate that electrostatic and steric fields play an important role in the biological activities of these compounds. Hence, based on the contour maps information, new compounds were designed, and their binding modes were elucidated in BRD4 protein's active site. Further, the activities and physicochemical properties of the designed molecules were also predicted using the best 3D-QSAR models. We believe that predicted models will help us to understand the structural requirements of BRD4 protein inhibitors that belong to quinolinone and quinazolinone classes for the designing of better active compounds.


Assuntos
Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Relação Quantitativa Estrutura-Atividade , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Sítios de Ligação , Proteínas de Ciclo Celular , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Ligação Proteica
2.
J Biomol Struct Dyn ; : 1-14, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814544

RESUMO

Ostrinia furnacalis is a species of moth in the Crambidae family that is harmful to maize and other corn crops in Southeast Asia and the Western Pacific regions. Ostrinia furnacalis causes devastating losses to economically important corn fields. The ß-N-acetyl-D-hexosaminidase is an essential enzyme in O. furnacalis and its substrate binding +1 active site is different from that of the plants and humans ß-N-acetyl-D-hexosaminidases. To develop environment-friendly insecticides against OfHex1, we conducted structure-guided computational insecticide discovery to identify potential inhibitors that can bind the active site and inhibit the substrate binding and activity of the enzyme. We adopted a three-pronged strategy to conduct virtual screening using Glide and virtual screening workflow (VSW) in Schrödinger Suite-2022-3, against crystal structures of OfHex1 (PDB Id:3NSN), its homologue in humans (PDB Id: 1NP0) and Alphafold model of ß-N-acetyl-D-hexosaminidase from Trichogramma pretiosum, an egg parasitoid that protects the crops from O. furnacalis. A library of 20,313 commercially available and "insecticide-like" compounds was extracted from published literature. LigPrep enabled 44,943 ready-to-dock conformers generation. Glide docking revealed 18 OfHex1-specific hits that were absent in human and T. pretiosum screens. Reference docking was conducted using inhibitors/natural ligands in the crystal structures and hits with better docking scores than the reference were selected for MD simulations using Desmond to understand the stability of hit-target interactions. We noted five compounds that bound to OfHex1 TMX active-site based on their docking scores, consistent binding as noted by MD simulations and their insecticide/pesticide likeliness as noted by the Comprehensive Pesticide Likeness Analysis.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA