Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Physiol ; 234(6): 8122-8133, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30417391

RESUMO

Mitochondria play an important role in maintaining cardiac homeostasis by supplying the major energy required for cardiac excitation-contraction coupling as well as controlling the key intracellular survival and death pathways. Healthy mitochondria generate ATP molecules through an aerobic process known as oxidative phosphorylation (OXPHOS). Mitochondrial injury during myocardial infarction (MI) impairs OXPHOS and results in the excessive production of reactive oxygen species (ROS), bioenergetic insufficiency, and contributes to the development of cardiovascular diseases. Therefore, mitochondrial biogenesis along with proper mitochondrial quality control machinery, which removes unhealthy mitochondria is pivotal for mitochondrial homeostasis and cardiac health. Upon damage to the mitochondrial network, mitochondrial quality control components are recruited to segregate the unhealthy mitochondria and target aberrant mitochondrial proteins for degradation and elimination. Impairment of mitochondrial quality control and accumulation of abnormal mitochondria have been reported in the pathogenesis of various cardiac disorders and heart failure. Here, we provide an overview of the recent studies describing various mechanistic pathways underlying mitochondrial homeostasis with the main focus on cardiac cells. In addition, this review demonstrates the potential effects of mitochondrial quality control dysregulation in the development of cardiovascular disease.


Assuntos
Doenças Cardiovasculares/genética , Traumatismos Cardíacos/genética , Mitocôndrias Cardíacas/genética , Miócitos Cardíacos/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Mitofagia/genética , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo
2.
J Cell Physiol ; 234(10): 18371-18381, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932190

RESUMO

Homeostasis of proteins involved in contractility of individual cardiomyocytes and those coupling adjacent cells is of critical importance as any abnormalities in cardiac electrical conduction may result in cardiac irregular activity and heart failure. Bcl2-associated athanogene 3 (BAG3) is a stress-induced protein whose role in stabilizing myofibril proteins as well as protein quality control pathways, especially in the cardiac tissue, has captured much attention. Mutations of BAG3 have been implicated in the pathogenesis of cardiac complications such as dilated cardiomyopathy. In this study, we have used an in vitro model of neonatal rat ventricular cardiomyocytes to investigate potential impacts of BAG3 on electrophysiological activity by employing the microelectrode array (MEA) technology. Our MEA data showed that BAG3 plays an important role in the cardiac signal generation as reduced levels of BAG3 led to lower signal frequency and amplitude. Our analysis also revealed that BAG3 is essential to the signal propagation throughout the myocardium, as the MEA data-based conduction velocity, connectivity degree, activation time, and synchrony were adversely affected by BAG3 knockdown. Moreover, BAG3 deficiency was demonstrated to be connected with the emergence of independently beating clusters of cardiomyocytes. On the other hand, BAG3 overexpression improved the activity of cardiomyocytes in terms of electrical signal amplitude and connectivity degree. Overall, by providing more in-depth analyses and characterization of electrophysiological parameters, this study reveals that BAG3 is of critical importance for electrical activity of neonatal cardiomyocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Autofagia/fisiologia , Células Cultivadas , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
3.
J Cell Physiol ; 234(4): 4432-4444, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30256393

RESUMO

The pathophysiology of human immunodeficiency virus (HIV)-associated cardiomyopathy remains uncertain. We used HIV-1 transgenic (Tg26) mice to explore mechanisms by which HIV-related proteins impacted on myocyte function. Compared to adult ventricular myocytes isolated from nontransgenic (wild type [WT]) littermates, Tg26 myocytes had similar mitochondrial membrane potential (ΔΨ m ) under normoxic conditions but lower Δ Ψ m after hypoxia/reoxygenation (H/R). In addition, Δ Ψ m in Tg26 myocytes failed to recover after Ca 2+ challenge. Functionally, mitochondrial Ca 2+ uptake was severely impaired in Tg26 myocytes. Basal and maximal oxygen consumption rates (OCR) were lower in normoxic Tg26 myocytes, and further reduced after H/R. Complex I subunit and ATP levels were lower in Tg26 hearts. Post-H/R, mitochondrial superoxide (O 2•- ) levels were higher in Tg26 compared to WT myocytes. Overexpression of B-cell lymphoma 2-associated athanogene 3 (BAG3) reduced O 2•- levels in hypoxic WT and Tg26 myocytes back to normal. Under normoxic conditions, single myocyte contraction dynamics were similar between WT and Tg26 myocytes. Post-H/R and in the presence of isoproterenol, myocyte contraction amplitudes were lower in Tg26 myocytes. BAG3 overexpression restored Tg26 myocyte contraction amplitudes to those measured in WT myocytes post-H/R. Coimmunoprecipitation experiments demonstrated physical association of BAG3 and the HIV protein Tat. We conclude: (a) Under basal conditions, mitochondrial Ca 2+ uptake, OCR, and ATP levels were lower in Tg26 myocytes; (b) post-H/R, Δ Ψ m was lower, mitochondrial O 2•- levels were higher, and contraction amplitudes were reduced in Tg26 myocytes; and (c) BAG3 overexpression decreased O 2•- levels and restored contraction amplitudes to normal in Tg26 myocytes post-H/R in the presence of isoproterenol.


Assuntos
Cardiomiopatias/metabolismo , Metabolismo Energético , Infecções por HIV/complicações , HIV-1/genética , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Cardiomiopatias/virologia , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Infecções por HIV/virologia , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/virologia , Contração Miocárdica , Miócitos Cardíacos/virologia , Oxirredução , Estresse Oxidativo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Função Ventricular Esquerda
4.
J Cell Physiol ; 233(2): 748-758, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28493473

RESUMO

Cardiovascular disease remains a leading cause of morbidity and mortality in HIV-positive patients, even in those whose viral loads are well controlled with antiretroviral therapy. However, the underlying molecular events responsible for the development of cardiac disease in the setting of HIV remain unknown. The HIV-encoded Tat protein plays a critical role in the activation of HIV gene expression and profoundly impacts homeostasis in both HIV-infected cells and uninfected cells that have taken up released Tat via a bystander effect. Since cardiomyocyte function, including excitation-contraction coupling, greatly depends on energy provided by the mitochondria, in this study, we performed a series of experiments to assess the impact of Tat on mitochondrial function and bioenergetics pathways in a primary cell culture model derived from neonatal rat ventricular cardiomyocytes (NRVCs). Our results show that the presence of Tat in cardiomyocytes is accompanied by a decrease in oxidative phosphorylation, a decline in the levels of ATP, and an accumulation of reactive oxygen species (ROS). Tat impairs the uptake of mitochondrial Ca2+ ([Ca2+ ]m ) and the electrophysiological activity of cardiomyocytes. Tat also affects the protein clearance pathway and autophagy in cardiomyocytes under stress due to hypoxia-reoxygenation conditions. A reduction in the level of ubiquitin along with dysregulated degradation of autophagy proteins including SQSTM1/p62 and a reduction of LC3 II were detected in cardiomyocytes harboring Tat. These results suggest that, by targeting mitochondria and protein quality control, Tat significantly impacts bioenergetics and autophagy resulting in dysregulation of cardiomyocyte health and homeostasis.


Assuntos
Metabolismo Energético , HIV-1/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Autofagia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Hipóxia Celular , Células Cultivadas , Interações Hospedeiro-Patógeno , Potenciais da Membrana , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Cardíacas/virologia , Mitofagia , Miócitos Cardíacos/virologia , Fosforilação Oxidativa , Cultura Primária de Células , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Fatores de Tempo
5.
J Cell Physiol ; 233(9): 6319-6326, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29323723

RESUMO

Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid protein that is found predominantly in the heart, skeletal muscle, and many cancers. Deletions and truncations in BAG3 that result in haplo-insufficiency have been associated with the development of dilated cardiomyopathy. To study the cellular and molecular events attributable to BAG3 haplo-insufficiency we generated a mouse in which one allele of BAG3 was flanked by loxP recombination sites (BAG3fl/+ ). Mice were crossed with α-MHC-Cre mice in order to generate mice with cardiac-specific haplo-insufficiency (cBAG3+/-) and underwent bi-weekly echocardiography to assess their cardiac phenotype. By 10 weeks of age, cBAG3+/- mice demonstrated increased heart size and diminished left ventricular ejection fraction when compared with non-transgenic littermates (Cre-/- BAG3fl/+ ). Contractility in adult myocytes isolated from cBAG3+/- mice were similar to those isolated from control mice at baseline, but showed a significantly decreased response to adrenergic stimulation. Intracellular calcium ([Ca2+ ]i ) transient amplitudes in myocytes isolated from cBAG3+/- mice were also similar to myocytes isolated from control mice at baseline but were significantly lower than myocytes from control mice in their response to isoproterenol. BAG3 haplo-insufficiency was also associated with decreased autophagy flux and increased apoptosis. Taken together, these results suggest that mice in which BAG3 has been deleted from a single allele provide a model that mirrors the biology seen in patients with heart failure and BAG3 haplo-insufficiency.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Adrenérgicos beta/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Adrenérgicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Insuficiência Cardíaca/metabolismo , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo
6.
J Cell Physiol ; 232(4): 797-805, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27381181

RESUMO

Mitochondrial abnormalities impact the development of myofibrillar myopathies. Therefore, understanding the mechanisms underlying the removal of dysfunctional mitochondria from cells is of great importance toward understanding the molecular events involved in the genesis of cardiomyopathy. Earlier studies have ascribed a role for BAG3 in the development of cardiomyopathy in experimental animals leading to the identification of BAG3 mutations in patients with heart failure which may play a part in the onset of disease development and progression. BAG3 is co-chaperone of heat shock protein 70 (HSP70), which has been shown to modulate apoptosis and autophagy, in several cell models. In this study, we explore the potential role of BAG3 in mitochondrial quality control. We demonstrate that siRNA mediated suppression of BAG3 production in neonatal rat ventricular cardiomyocytes (NRVCs) significantly elevates the level of Parkin, a key component of mitophagy. We found that both BAG3 and Parkin are recruited to depolarized mitochondria and promote mitophagy. Suppression of BAG3 in NRVCs significantly reduces autophagy flux and eliminates clearance of Tom20, an essential import receptor for mitochondria proteins, after induction of mitophagy. These observations suggest that BAG3 is critical for the maintenance of mitochondrial homeostasis under stress conditions, and disruptions in BAG3 expression impact cardiomyocyte function. J. Cell. Physiol. 232: 797-805, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Linhagem Celular , Metabolismo Energético , Técnicas de Silenciamento de Genes , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/metabolismo
7.
J Cell Biochem ; 117(8): 1813-21, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26729625

RESUMO

Bag5 is a member of the BAG family of molecular chaperone regulators and is unusual in that it consists of five BAG domains, which function as modulators of chaperone activity. Bag family proteins play a key role in cellular as well as in cardiac function and their differential expression is reported in heart failure. In this study, we examined the importance of a Bag family member protein, Bag5, in cardiomyocytes during endoplasmic reticulum (ER) stress. We found that expression of Bag5 in cardiomyocytes is significantly increased with the induction of ER stress in a time dependent manner. We have taken gain-in and loss-of functional approaches to characterize Bag5 protein function in cardiomyocytes. Adenoviral mediated expression of Bag5 significantly decreased cell death as well as improved cellular viability in ER stress. Along with this, ER stress-induced CHOP protein expression is significantly decreased in cells that overexpress Bag5. Conversely, we found that siRNA-mediated knockdown of Bag5 caused cell death, increased cytotoxicity, and decreased cellular viability in cardiomyocytes. Mechanistically, we found that Bag5 protein expression is significantly increased in the ER during ER stress and that this in turn modulates GRP78 protein stability and reduces ER stress. This study suggests that Bag5 is an important regulator of ER function and so could be exploited as a tool to improve cardiomyocyte function under stress conditions. J. Cell. Biochem. 117: 1813-1821, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Choque Térmico/genética , Estabilidade Proteica , Ratos , Ratos Sprague-Dawley
8.
Cell Death Dis ; 10(7): 473, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209204

RESUMO

HIV-1 Tat is known to be released by HIV infected non-neuronal cells in the brain, and after entering neurons, compromises brain homeostasis by impairing pro-survival pathways, thus contributing to the development of HIV-associated CNS disorders commonly observed in individuals living with HIV. Here, we demonstrate that synapsins, phosphoproteins that are predominantly expressed in neuronal cells and play a vital role in modulating neurotransmitter release at the pre-synaptic terminal, and neuronal differentiation become targets for Tat through autophagy and protein quality control pathways. We demonstrate that the presence of Tat in neurons results in downregulation of BAG3, a co-chaperone for heat shock proteins (Hsp70/Hsc70) that is implicated in protein quality control (PQC) processes by eliminating mis-folded and damaged proteins, and selective macroautophagy. Our results show that treatment of cells with Tat or suppression of BAG3 expression by siRNA in neuronal cells disturbs subcellular distribution of synapsins and synaptotagmin 1 (Syt1) leading to their accumulation in the neuronal soma and along axons in a punctate pattern, rather than being properly distributed at axon-terminals. Further, our results revealed that synapsins partially lost their stability and their removal via lysosomal autophagy was noticeably impaired in cells with low levels of BAG3. The observed impairment of lysosomal autophagy, under this condition, is likely caused by cells losing their ability to process LC3-I to LC3-II, in part due to a decrease in the ATG5 levels upon BAG3 knockdown. These observations ascribe a new function for BAG3 in controlling synaptic communications and illuminate a new downstream target for Tat to elicit its pathogenic effect in impacting neuronal cell function and behavior.


Assuntos
Homeostase , Neurônios/metabolismo , Sinapsinas/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteína 5 Relacionada à Autofagia/metabolismo , Células Cultivadas , Regulação para Baixo/genética , Lisossomos/metabolismo , Camundongos Transgênicos , Modelos Biológicos , Estresse Oxidativo , Agregados Proteicos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Vesículas Sinápticas/metabolismo , Ubiquitinação
9.
JACC Basic Transl Sci ; 3(1): 122-131, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29938246

RESUMO

The B-cell lymphoma 2-associated anthanogene (BAG3) protein is expressed most prominently in the heart, the skeletal muscle, and in many forms of cancer. In the heart, it serves as a co-chaperone with heat shock proteins in facilitating autophagy; binds to B-cell lymphoma 2, resulting in inhibition of apoptosis; attaches actin to the Z disk, providing structural support for the sarcomere; and links the α-adrenergic receptor with the L-type Ca2+ channel. When BAG3 is overexpressed in cancer cells, it facilitates prosurvival pathways that lead to insensitivity to chemotherapy, metastasis, cell migration, and invasiveness. In contrast, in the heart, mutations in BAG3 have been associated with a variety of phenotypes, including both hypertrophic/restrictive and dilated cardiomyopathy. In murine skeletal muscle and vasculature, a mutation in BAG3 leads to critical limb ischemia after femoral artery ligation. An understanding of the biology of BAG3 is relevant because it may provide a therapeutic target in patients with both cardiac and skeletal muscle disease.

10.
JCI Insight ; 1(19): e90931, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27882354

RESUMO

Bcl-2-associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9-expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Miócitos Cardíacos/patologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose , Autofagia , Hipóxia Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Traumatismo por Reperfusão/terapia , Transfecção
11.
Recent Pat Drug Deliv Formul ; 9(2): 107-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25354269

RESUMO

Recently, great attention has been paid to in situ gel-forming chitosan/glycerophosphate (CS/Gp) formulation due to its high biocompatibility with incorporated cells and medical agents, biodegradability and sharp thermosensitive gelation. CS/Gp is in liquid state at room temperature and after minimally invasive administration into the desired tissue, it forms a solid-like gel as a response to temperature increase. The overview of various recently patented strategies on injectable delivery systems indicates the significance of this formulation in biomedical applications. This thermosensitive hydrogel has a great potential as scaffold material in tissue engineering, due to its good biocompatibility, minimal immune reaction, high antibacterial nature, good adhesion to cells and the ability to be molded in various geometries. Moreover, CS/Gp hydrogel has been utilized as a smart drug delivery system to increase patient compliance by maintaining the drug level in the therapeutic window for a long time while avoiding the need for frequent injections of the therapeutic agent. This review paper highlights the recent patents and investigations on different formulations of CS/Gp hydrogels as tissue engineering scaffolds and carriers for therapeutic agents. Additionally, the dominant mechanism of sol-gel transition in those systems as well as their physicochemical properties and biocompatibility are discussed in detail.


Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Glicerofosfatos/química , Hidrogéis/química , Engenharia Tecidual/métodos , Animais , Química Farmacêutica , Quitosana/administração & dosagem , Sistemas de Liberação de Medicamentos/tendências , Glicerofosfatos/administração & dosagem , Humanos , Hidrogéis/administração & dosagem , Injeções , Temperatura , Engenharia Tecidual/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA