RESUMO
We report on the high detection sensitivity of a laser feedback interferometry scheme based on a terahertz frequency quantum cascade laser (QCL). We show that variations on the laser voltage induced by optical feedback to the laser can be resolved with the reinjection of powers as low as â¼-125 dB of the emitted power. Our measurements demonstrate a noise equivalent power of â¼1.4 pW/âHz, although, after accounting for the reinjection losses, we estimate that this corresponds to only â¼1 fW/âHz being coupled to the QCL active region.
RESUMO
We demonstrate an active phase-nulling scheme for terahertz (THz) frequency quantum cascade lasers (QCLs) under optical feedback, by active electronic feedback control of the emission frequency. Using this scheme, the frequency tuning rate of a THz QCL is characterized, with significantly reduced experimental complexity compared to alternative approaches. Furthermore, we demonstrate real-time displacement sensing of targets, overcoming the resolution limits imposed by quantization in previously implemented fringe-counting methods. Our approach is readily applicable to high-frequency vibrometry and surface profiling of targets, as well as frequency-stabilization schemes for THz QCLs.
RESUMO
We demonstrate coherent three-dimensional terahertz imaging by frequency modulation of a quantum cascade laser in a compact and experimentally simple self-mixing scheme. Through this approach, we can realize significantly faster acquisition rates compared to previous schemes employing longitudinal mechanical scanning of a sample. We achieve a depth resolution of better than 0.1 µm with a power noise spectral density below -50 dB/Hz, for a sampling time of 10 ms/pixel.
RESUMO
We propose a terahertz (THz)-frequency synthetic aperture radar imaging technique based on self-mixing (SM) interferometry, using a quantum cascade laser. A signal processing method is employed which extracts and exploits the radar-related information contained in the SM signals, enabling the creation of THz images with improved spatial resolution. We demonstrate this by imaging a standard resolution test target, achieving resolution beyond the diffraction limit.
RESUMO
We describe methods for estimating the parameters of Markovian population processes in continuous time, thus increasing their utility in modelling real biological systems. A general approach, applicable to any finite-state continuous-time Markovian model, is presented, and this is specialised to a computationally more efficient method applicable to a class of models called density-dependent Markov population processes. We illustrate the versatility of both approaches by estimating the parameters of the stochastic SIS logistic model from simulated data. This model is also fitted to data from a population of Bay checkerspot butterfly (Euphydryas editha bayensis), allowing us to assess the viability of this population.