Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 112(1): 17-29, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23618898

RESUMO

BACKGROUND AND AIMS: A positive correlation between tissue thickness and crassulacean acid metabolism (CAM) expression has been frequently suggested. Therefore, this study addressed the question of whether water availability modulates photosynthetic plasticity in different organs of two epiphytic orchids with distinct leaf thickness. METHODS: Tissue morphology and photosynthetic mode (C3 and/or CAM) were examined in leaves, pseudobulbs and roots of a thick-leaved (Cattleya walkeriana) and a thin-leaved (Oncidium 'Aloha') epiphytic orchid. Morphological features were studied comparing the drought-induced physiological responses observed in each organ after 30 d of either drought or well-watered treatments. KEY RESULTS: Cattleya walkeriana, which is considered a constitutive CAM orchid, displayed a clear drought-induced up-regulation of CAM in its thick leaves but not in its non-leaf organs (pseudobulbs and roots). The set of morphological traits of Cattleya leaves suggested the drought-inducible CAM up-regulation as a possible mechanism of increasing water-use efficiency and carbon economy. Conversely, although belonging to an orchid genus classically considered as performing C3 photosynthesis, Oncidium 'Aloha' under drought seemed to express facultative CAM in its roots and pseudobulbs but not in its leaves, indicating that such photosynthetic responses might compensate for the lack of capacity to perform CAM in its thin leaves. Morphological features of Oncidium leaves also indicated lower efficiency in preventing water and CO2 losses, while aerenchyma ducts connecting pseudobulbs and leaves suggested a compartmentalized mechanism of nighttime carboxylation via phosphoenolpyruvate carboxylase (PEPC) (pseudobulbs) and daytime carboxylation via Rubisco (leaves) in drought-exposed Oncidium plants. CONCLUSIONS: Water availability modulated CAM expression in an organ-compartmented manner in both orchids studied. As distinct regions of the same orchid could perform different photosynthetic pathways and variable degrees of CAM expression depending on the water availability, more attention should be addressed to this in future studies concerning the abundance of CAM plants.


Assuntos
Orchidaceae/anatomia & histologia , Orchidaceae/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/anatomia & histologia , Carbono/metabolismo , Secas , Malato Desidrogenase/metabolismo , Orchidaceae/fisiologia , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Água/metabolismo
2.
J Plant Physiol ; 168(11): 1208-16, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21333380

RESUMO

The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. However, little is known about the physiological characteristics of nutrient uptake and assimilation. In order to better understand the mechanisms utilized by some tank epiphytic bromeliads to optimize the nitrogen acquisition and assimilation, a study was proposed to verify the existence of a differential capacity to assimilate nitrogen in different leaf portions. The experiments were conducted using young plants of Vriesea gigantea. A nutrient solution containing NO3⁻/NH4⁺ or urea as the sole nitrogen source was supplied to the tank of these plants and the activities of urease, nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (NADH-GDH) were quantified in apical and basal leaf portions after 1, 3, 6, 9, 12, 24 and 48 h. The endogenous ammonium and urea contents were also analyzed. Independent of the nitrogen sources utilized, NR and urease activities were higher in the basal portions of leaves in all the period analyzed. On the contrary, GS and GDH activities were higher in apical part. It was also observed that the endogenous ammonium and urea had the highest contents detected in the basal region. These results suggest that the basal portion was preferentially involved in nitrate reduction and urea hydrolysis, while the apical region could be the main area responsible for ammonium assimilation through the action of GS and GDH activities. Moreover, it was possible to infer that ammonium may be transported from the base, to the apex of the leaves. In conclusion, it was suggested that a spatial and functional division in nitrogen absorption and NH4⁺ assimilation between basal and apical leaf areas exists, ensuring that the majority of nitrogen available inside the tank is quickly used by bromeliad's leaves.


Assuntos
Bromeliaceae/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Clorofila/análise , Glutamato Desidrogenase/análise , Glutamato-Amônia Ligase/análise , Nitrato Redutase/análise , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/metabolismo , Amido/análise , Ureia/análise , Ureia/metabolismo , Urease/análise
3.
J Plant Physiol ; 167(7): 526-33, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19954859

RESUMO

Leaves comprise most of the vegetative body of tank bromeliads and are usually subjected to strong longitudinal gradients. For instance, while the leaf base is in contact with the water accumulated in the tank, the more light-exposed middle and upper leaf sections have no direct access to this water reservoir. Therefore, the present study attempted to investigate whether different leaf portions of Guzmania monostachia, a tank-forming C(3)-CAM bromeliad, play distinct physiological roles in response to water shortage, which is a major abiotic constraint in the epiphytic habitat. Internal and external morphological features, relative water content, pigment composition and the degree of CAM expression were evaluated in basal, middle and apical leaf portions in order to allow the establishment of correlations between the structure and the functional importance of each leaf region. Results indicated that besides marked structural differences, a high level of functional specialization is also present along the leaves of this bromeliad. When the tank water was depleted, the abundant hydrenchyma of basal leaf portions was the main reservoir for maintaining a stable water status in the photosynthetic tissues of the apical region. In contrast, the CAM pathway was intensified specifically in the upper leaf section, which is in agreement with the presence of features more suitable for the occurrence of photosynthesis at this portion. Gas exchange data indicated that internal recycling of respiratory CO(2) accounted for virtually all nighttime acid accumulation, characterizing a typical CAM-idling pathway in the drought-exposed plants. Altogether, these data reveal a remarkable physiological complexity along the leaves of G. monostachia, which might be a key adaptation to the intermittent water supply of the epiphytic niche.


Assuntos
Bromeliaceae/enzimologia , Fotossíntese , Folhas de Planta/enzimologia , Água/metabolismo , Bromeliaceae/anatomia & histologia , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Secas , Folhas de Planta/anatomia & histologia
4.
Dev Dyn ; 227(3): 450-7, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12815632

RESUMO

The stomach of the rat undergoes extensive changes during the formation and maturation of gastric glands. The presence of transforming growth factor beta (TGFbeta) in rat milk and in the gastrointestinal tract of pups may suggest its role in this process. The current study evaluated the in vivo dynamic expression and distribution of TGFbeta1, beta2, beta3 and their receptors TbetaRI and TbetaRII in the gastric epithelium of 20-day fetal rats and 1-, 14-, 21-, and 30-day-old pups. Immunohistochemistry was used to detect the proteins, and staining was classified according to intensity and cell type. The results showed that the gastric epithelium expresses TGFbeta isoforms and receptors throughout development. We found that immunoreactivity paralleled the appearance of differentiated cells, such that surface mucous cells were the first to be immunostained and chief cells were the last. The intensity of reactions followed this same pattern, showing that the expression of TGFbeta isoforms spread along the gland with growth. Of interest, the highest apparent activity of TGFbeta was observed from 21 days onward, a period that is concomitant with weaning and maturation of most gastric cell types. In addition, surface mucous cells were strongly labeled at the basal cytoplasm at 14 days, suggesting an interaction with the connective tissue. In conclusion, the dynamic expression of TGFbeta1, beta2, beta3, and TbetaRI and TbetaRII through stomach development suggests significant paracrine and autocrine roles for this growth factor. We propose that temporal and spatial differences may be regulated by dietary changes, which in turn control cell proliferation and differentiation in the gastric epithelium.


Assuntos
Mucosa Gástrica/embriologia , Mucosa Gástrica/patologia , Fator de Crescimento Transformador beta/biossíntese , Ração Animal , Animais , Diferenciação Celular , Divisão Celular , Citoplasma/metabolismo , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Modelos Anatômicos , Isoformas de Proteínas , Ratos , Ratos Wistar , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Estômago/embriologia , Fatores de Tempo , Distribuição Tecidual , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta2 , Fator de Crescimento Transformador beta3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA