Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(43): e2301219, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376845

RESUMO

2D nanosheets self-assembled with amphiphilic molecules are promising tools for biomedical applications; yet, there are challenges to form and stabilize these nanosheets under complex physiological conditions. Here, the development of lipid nanosheets with high structural stability that can be reversibly converted to cell-sized vesicles by changes in pH within the physiological range robustly, are described. The system is controlled by the membrane disruptive peptide E5 and a cationic copolymer anchored on lipid membranes. It is envisioned that nanosheets formed using the dual anchoring peptide/cationic copolymer system can be employed in dynamic lipidic nanodevices, such as the vesosomes described here, drug delivery systems, and artificial cells.


Assuntos
Sistemas de Liberação de Medicamentos , Peptídeos , Peptídeos/química , Polímeros/química , Concentração de Íons de Hidrogênio , Lipídeos
2.
ACS Appl Mater Interfaces ; 14(48): 53558-53566, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36442490

RESUMO

Lipid bilayer transformations are involved in biological phenomena including cell division, autophagy, virus infection, and vesicle transport. Artificial materials to manipulate membrane dynamics play a vital role in cellular engineering and drug delivery technology that accesses the membranes of cells or liposomes. Transformation from 3D lipid vesicles to 2D nanosheets is thermodynamically prohibited because the apolar/polar interfaces between the hydrophobic bilayer edges and water are energetically unfavorable. We recently reported that cell-sized lipid vesicles (or giant vesicles) can be thoroughly transformed to 2D nanosheets by the addition of the amphiphilic E5 peptide and a cationic graft copolymer. Here, to understand the mechanisms underlying the lipid nanosheet formation, we systematically investigated the structural effects of the cationic copolymers on nanosheet formation. We found that lipid nanosheet formation is controlled in an all-or-nothing manner when the graft content of the copolymer is increased from 5.7 mol % to 7.7 mol %. This finding prompted us to obtain autonomous 2D/3D transformation system. A newly designed hetero-grafted cationic copolymers with thermoresponsive poly(N-isopropylacrylamide) grafts enables spontaneous 3D vesicle/2D nanosheet transformation in response to temperature. These findings would enable us to obtain smart nanointerfaces that trigger cell-sized lipid membrane dynamics in response to diverse stimuli and to create 2D-3D convertible lipid-based biomaterials.


Assuntos
Bicamadas Lipídicas
3.
J Control Release ; 330: 463-469, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33359738

RESUMO

Controlled or targeted membrane lysis induced by cascades of assembly and activation of biomolecules on membrane surfaces is important in programmed cell death and host defense systems. In a previous study, we reported that an ionic graft copolymer with a polycation backbone and water-soluble graft chains, poly(allylamine)-graft-dextran (PAA-g-Dex) chaperoned folding and assembly of E5, a membrane-destructive peptide derived from influenza hemagglutinin, to its increase membrane-disruptive activity. In this study, we modified the copolymer with long acyl chains, which resulted in delivery of the copolymer to membrane surfaces of liposomes and living cells. The liposomes with PAA-g-Dex functionalized with stearic acid (PAA-g-Dex-SA) on their surfaces underwent vesicle-to-sheet conversion upon addition of E5, whereas control liposomes did not. E5 also induced selective lysis of cells incubated with PAA-g-Dex-SA. The spatially specific activation of E5 on target membrane surfaces driven by self-assembly of copolymer and activation of E5 should find application in lipid-based delivery devices and cell-based therapeutics.


Assuntos
Peptídeos , Polímeros , Íons , Lipossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA