Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Analyst ; 147(12): 2843-2850, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35621375

RESUMO

Raman spectroscopy is a powerful method for estimating the molecular structure of a target that can be adapted for biomedical analysis given its non-destructive nature. Inflammatory skin diseases impair the skin's barrier function and interfere with the patient's quality of life. There are limited methods for non-invasive and objective assessment of skin inflammation. We examined whether Raman spectroscopy can be used to predict skin inflammation with high sensitivity and specificity when combined with artificial intelligence (AI) analysis. Inflammation was chemically induced in mouse ears, and Raman spectra induced by a 785 nm laser were recorded. A principal component (PC) analysis of the Raman spectra was performed to extract PCs with the highest percentage of variance and to estimate the statistical score. The accuracy in predicting inflammation based on the Raman spectra with or without AI analysis was assessed using receiver operating characteristic (ROC) curves. We observed some typical changes in the Raman spectra upon skin inflammation, which may have resulted from vasodilation and interstitial oedema. The estimated statistical scores based on spectral changes correlated with the histopathological changes in the skin. The ROC curve based on PC2, which appeared to include some spectral features, revealed a maximum accuracy rate of 80.0% with an area under the curve (AUC) of 0.864. The AI analysis improved the accuracy rate to 93.1% with an AUC of 0.972. The current findings demonstrate that the combination of Raman spectroscopy with near-infrared excitation and AI analysis can provide highly accurate information on the pathology of skin inflammation.


Assuntos
Inteligência Artificial , Análise Espectral Raman , Animais , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/diagnóstico , Camundongos , Análise de Componente Principal , Qualidade de Vida , Análise Espectral Raman/métodos
2.
Org Biomol Chem ; 18(38): 7571-7576, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32940324

RESUMO

We have synthesized a series of quaternized imidazo[1,2-a]pyridines in three steps from commercially available reagents. These compounds exhibit blue fluorescence emission at around 425 nm with good quantum yields. In addition, one specific compound was found to work as not only a two- and three-photon excitable mitochondria imaging agent, but also a therapeutic agent upon continuous irradiation conditions.


Assuntos
Piridinas
3.
J Clin Biochem Nutr ; 64(1): 20-26, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30705508

RESUMO

3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, statins, are widely used for preventing cardiovascular and cerebrovascular diseases by controlling blood cholesterol level. Additionally, previous studies revealed the scavenging effects of statins on free radicals. We assessed direct scavenging activities of two water-soluble statins, fluvastatin and pravastatin, on multiple free radicals using electron spin resonance spectrometry with spin trapping method. We estimated reaction rate constants (k fv for fluvastatin, and k pv for pravastatin). Superoxide anion was scavenged by fluvastatin and pravastatin with k fv and k pv of 4.82 M-1s-1 and 49.0 M-1s-1, respectively. Scavenging effects of fluvastatin and pravastatin on hydroxyl radical were comparable; both k fv and k pv were >109 M-1s-1. Fluvastatin also eliminated tert-butyl peroxyl radical with relative k fv of 2.63 to that of CYPMPO, whereas pravastatin did not affect tert-butyl peroxyl radical. Nitric oxide was scavenged by fluvastatin and pravastatin with k fv and k pv of 68.6 M-1s-1 and 701 M-1s-1, respectively. Both fluvastatin and pravastatin had scavenging effects on superoxide anion, hydroxyl radical and nitric oxide radical. On the other hand, tert-butyl peroxyl radical was scavenged only by fluvastatin, suggesting that fluvastatin might have more potential effect than pravastatin to prevent atherosclerosis and ischemia/reperfusion injury via inhibiting oxidation of lipids.

4.
Pharmacol Res ; 131: 150-163, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29477480

RESUMO

Evodiae fructus is a widely used herbal drug in traditional Chinese medicine. Evodia extract was found to inhibit hERG channels. The aim of the current study was to identify hERG inhibitors in Evodia extract and to investigate their potential proarrhythmic effects. Dehydroevodiamine (DHE) and hortiamine were identified as IKr (rapid delayed rectifier current) inhibitors in Evodia extract by HPLC-microfractionation and subsequent patch clamp studies on human embryonic kidney cells. DHE and hortiamine inhibited IKr with IC50s of 253.2±26.3nM and 144.8±35.1nM, respectively. In dog ventricular cardiomyocytes, DHE dose-dependently prolonged the action potential duration (APD). Early afterdepolarizations (EADs) were seen in 14, 67, 100, and 67% of cells after 0.01, 0.1, 1 and 10µM DHE, respectively. The proarrhythmic potential of DHE was evaluated in 8 anesthetized rabbits and in 8 chronic atrioventricular block (cAVB) dogs. In rabbits, DHE increased the QT interval significantly by 12±10% (0.05mg/kg/5min) and 60±26% (0.5mg/kg/5min), and induced Torsade de Pointes arrhythmias (TdP, 0.5mg/kg/5min) in 2 rabbits. In cAVB dogs, 0.33mg/kg/5min DHE increased QT duration by 48±10% (P<0.05*) and induced TdP in 2/4 dogs. A higher dose did not induce TdP. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), methanolic extracts of Evodia, DHE and hortiamine dose-dependently prolonged APD. At 3µM DHE and hortiamine induced EADs. hERG inhibition at submicromolar concentrations, APD prolongation and EADs in hiPSC-CMs and dose-dependent proarrhythmic effects of DHE at micromolar plasma concentrations in cAVB dogs should increase awareness regarding proarrhythmic effects of widely used Evodia extracts.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Alcaloides/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Medicamentos de Ervas Chinesas/efeitos adversos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Evodia , Alcaloides/química , Alcaloides/farmacologia , Animais , Arritmias Cardíacas/metabolismo , Cães , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Evodia/química , Feminino , Células HEK293 , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Coelhos , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/metabolismo , Xenopus
5.
J Cell Mol Med ; 21(10): 2514-2523, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28425222

RESUMO

Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking pathways is largely unknown. KIR 2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (IK1 ), are degraded in lysosomes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late-endosome/lysosome system. Here we defined the potential interference in KIR 2.1 backward trafficking by amiodarone and dronedarone. Both drugs inhibited IK1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK-KWGF cells, both drugs dose- and time-dependently increased KIR 2.1 expression (2.0 ± 0.2-fold with amiodarone: 10 µM, 24 hrs; 2.3 ± 0.3-fold with dronedarone: 5 µM, 24 hrs) and late-endosomal/lysosomal KIR 2.1 accumulation. Increased KIR 2.1 expression level was also observed in the presence of Nav 1.5 co-expression. Augmented KIR 2.1 protein levels and intracellular accumulation were also observed in COS-7, END-2, MES-1 and EPI-7 cells. Both drugs had no effect on Kv 11.1 ion channel protein expression levels. Finally, amiodarone (73.3 ± 10.3% P < 0.05 at -120 mV, 5 µM) enhanced IKIR2.1 upon 24-hrs treatment, whereas dronedarone tended to increase IKIR2.1 and it did not reach significance (43.8 ± 5.5%, P = 0.26 at -120 mV; 2 µM). We conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced IK1 by inhibiting KIR 2.1 degradation.


Assuntos
Amiodarona/análogos & derivados , Amiodarona/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Antiarrítmicos/farmacologia , Células COS , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Dronedarona , Células HEK293 , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Coelhos
6.
J Biomed Sci ; 24(1): 44, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28711067

RESUMO

BACKGROUND: The inward rectifier potassium current IK1 contributes to a stable resting membrane potential and phase 3 repolarization of the cardiac action potential. KCNJ2 gain-of-function mutations V93I and D172N associate with increased IK1, short QT syndrome type 3 and congenital atrial fibrillation. Pentamidine-Analogue 6 (PA-6) is an efficient (IC50 = 14 nM with inside-out patch clamp methodology) and specific IK1 inhibitor that interacts with the cytoplasmic pore region of the KIR2.1 ion channel, encoded by KCNJ2. At 10 µM, PA-6 increases wild-type (WT) KIR2.1 expression in HEK293T cells upon chronic treatment. We hypothesized that PA-6 will interact with and inhibit V93I and D172N KIR2.1 channels, whereas impact on channel expression at the plasma membrane requires higher concentrations. METHODS: Molecular modelling was performed with the human KIR2.1 closed state homology model using FlexX. WT and mutant KIR2.1 channels were expressed in HEK293 cells. Patch-clamp single cell electrophysiology measurements were performed in the whole cell and inside-out mode of the patch clamp method. KIR2.1 expression level and localization were determined by western blot analysis and immunofluorescence microscopy, respectively. RESULTS: PA-6 docking in the V93I/D172N double mutant homology model of KIR2.1 demonstrated that mutations and drug-binding site are >30 Å apart. PA-6 inhibited WT and V93I outward currents with similar potency (IC50 = 35.5 and 43.6 nM at +50 mV for WT and V93I), whereas D172N currents were less sensitive (IC50 = 128.9 nM at +50 mV) using inside-out patch-clamp electrophysiology. In whole cell mode, 1 µM of PA-6 inhibited outward IK1 at -50 mV by 28 ± 36%, 18 ± 20% and 10 ± 6%, for WT, V93I and D172N channels respectively. Western blot analysis demonstrated that PA-6 (5 µM, 24 h) increased KIR2.1 expression levels of WT (6.3 ± 1.5 fold), and V93I (3.9 ± 0.9) and D172N (4.8 ± 2.0) mutants. Immunofluorescent microscopy demonstrated dose-dependent intracellular KIR2.1 accumulation following chronic PA-6 application (24 h, 1 and 5 µM). CONCLUSIONS: 1) KCNJ2 gain-of-function mutations V93I and D172N in the KIR2.1 ion channel do not impair PA-6 mediated inhibition of IK1, 2) PA-6 elevates KIR2.1 protein expression and induces intracellular KIR2.1 accumulation, 3) PA-6 is a strong candidate for further preclinical evaluation in treatment of congenital SQT3 and AF.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Pentamidina/análogos & derivados , Pentamidina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/genética , Potenciais de Ação , Células HEK293 , Humanos , Potenciais da Membrana , Simulação de Acoplamento Molecular , Pentamidina/química , Bloqueadores dos Canais de Potássio/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
7.
J Cell Physiol ; 231(10): 2249-56, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26873862

RESUMO

Skeletal myoblast (SkMB) transplantation has been conducted as a therapeutic strategy for severe heart failure. However, arrhythmogenicity following transplantation remains unsolved. We developed an in vitro model of myoblast transplantation with "patterned" or "randomly-mixed" co-culture of SkMBs and cardiomyocytes enabling subsequent electrophysiological, and arrhythmogenic evaluation. SkMBs were magnetically labeled with magnetite nanoparticles and co-cultured with neonatal rat ventricular myocytes (NRVMs) on multi-electrode arrays. SkMBs were patterned by a magnet beneath the arrays. Excitation synchronicity was evaluated by Ca(2+) imaging using a gene-encoded Ca(2+) indicator, G-CaMP2. In the monoculture of NRVMs (control), conduction was well-organized. In the randomly-mixed co-culture of NRVMs and SkMBs (random group), there was inhomogeneous conduction from multiple origins. In the "patterned" co-culture where an en bloc SKMB-layer was inserted into the NRVM-layer, excitation homogenously propagated although conduction was distorted by the SkMB-area. The 4-mm distance conduction time (CT) in the random group was significantly longer (197 ± 126 ms) than in control (17 ± 3 ms). In the patterned group, CT through NRVM-area did not change (25 ± 3 ms), although CT through the SkMB-area was significantly longer (132 ± 77 ms). The intervals between spontaneous excitation varied beat-to-beat in the random group, while regular beating was recorded in the control and patterned groups. Synchronized Ca(2+) transients of NRVMs were observed in the patterned group, whereas those in the random group were asynchronous. Patterned alignment of SkMBs is feasible with magnetic nanoparticles. Using the novel in vitro model mimicking cell transplantation, it may become possible to predict arrhythmogenicity due to heterogenous cell transplantation. J. Cell. Physiol. 231: 2249-2256, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cocultura , Ventrículos do Coração/citologia , Nanopartículas de Magnetita/administração & dosagem , Mioblastos Esqueléticos/citologia , Miócitos Cardíacos/citologia , Animais , Arritmias Cardíacas/fisiopatologia , Células Cultivadas , Infarto do Miocárdio/fisiopatologia , Nanotecnologia/métodos , Ratos Wistar
8.
Am J Physiol Heart Circ Physiol ; 311(3): H750-8, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422985

RESUMO

It has been reported that blockade of the inward rectifier K(+) current (IK1) facilitates termination of ventricular fibrillation. We hypothesized that partial IK1 blockade destabilizes spiral wave (SW) re-entry, leading to its termination. Optical action potential (AP) signals were recorded from left ventricles of Langendorff-perfused rabbit hearts with endocardial cryoablation. The dynamics of SW re-entry were analyzed during ventricular tachycardia (VT), induced by cross-field stimulation. Intercellular electrical coupling in the myocardial tissue was evaluated by the space constant. In separate experiments, AP recordings were made using the microelectrode technique from right ventricular papillary muscles of rabbit hearts. Ba(2+) (10-50 µM) caused a dose-dependent prolongation of VT cycle length and facilitated termination of VT in perfused hearts. Baseline VT was maintained by a stable rotor, where an SW rotated around an I-shaped functional block line (FBL). Ba(2+) at 10 µM prolonged I-shaped FBL and phase-singularity trajectory, whereas Ba(2+) at 50 µM transformed the SW rotation dynamics from a stable linear pattern to unstable circular/cycloidal meandering. The SW destabilization was not accompanied by SW breakup. Under constant pacing, Ba(2+) caused a dose-dependent prolongation of APs, and Ba(2+) at 50 µM decreased conduction velocity. In papillary muscles, Ba(2+) at 50 µM depolarized the resting membrane potential. The space constant was increased by 50 µM Ba(2+) Partial IK1 blockade destabilizes SW rotation dynamics through a combination of prolongation of the wave length, reduction of excitability, and enhancement of electrotonic interactions, which facilitates termination of ventricular tachyarrhythmias.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Bário/farmacologia , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Taquicardia Ventricular/metabolismo , Fibrilação Ventricular/metabolismo , Animais , Arritmias Cardíacas , Criocirurgia , Coração/fisiopatologia , Preparação de Coração Isolado , Imagem Óptica , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Coelhos , Taquicardia Ventricular/fisiopatologia , Fibrilação Ventricular/fisiopatologia
9.
Circ J ; 80(6): 1346-55, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27180889

RESUMO

BACKGROUND: Atrial fibrillation (AF) begets AF in part due to atrial remodeling, the molecular mechanisms of which have not been completely elucidated. This study was conducted to identify microRNA(s) responsible for electrical remodeling in AF. METHODS AND RESULTS: The expression profiles of 1205 microRNAs, in cardiomyocytes from patients with persistent AF and from age-, gender-, and cardiac function-matched control patients with normal sinus rhythm, were examined by use of a microRNA microarray platform. Thirty-nine microRNAs differentially expressed in AF patients' atria were identified, including miR-30d, as a candidate responsible for ion channel remodeling by in silico analysis. MiR-30d was significantly upregulated in cardiomyocytes from AF patients, whereas the mRNA and protein levels ofCACNA1C/Cav1.2 andKCNJ3/Kir3.1, postulated targets of miR-30d, were markedly reduced.KCNJ3/Kir3.1 expression was downregulated by transfection of the miR-30 precursor, concomitant with a reduction of the acetylcholine-sensitive inward-rectifier K(+)current (IK.ACh).KCNJ3/Kir3.1 (but notCACNA1C/Cav1.2) expression was enhanced by the knockdown of miR-30d. The Ca(2+)ionophore, A23187, induced a dose-dependent upregulation of miR-30d, followed by the suppression ofKCNJ3mRNA expression. Blockade of protein kinase C signaling blunted the [Ca(2+)]i-dependent downregulation of Kir3.1 via miR-30d. CONCLUSIONS: The downward remodeling ofIK.AChis attributed, at least in part, to deranged Ca(2+)handling, leading to the upregulation of miR-30d in human AF, revealing a novel post-transcriptional regulation ofIK.ACh. (Circ J 2016; 80: 1346-1355).


Assuntos
Fibrilação Atrial/fisiopatologia , MicroRNAs/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Idoso , Estudos de Casos e Controles , Células Cultivadas , Regulação para Baixo , Feminino , Proteínas de Ligação ao GTP , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Regulação para Cima
10.
Heart Vessels ; 31(7): 1176-84, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26498939

RESUMO

Bepridil is an effective antiarrhythmic drug on supraventricular and ventricular arrhythmias, and inhibitor of calmodulin. Recent investigations have been elucidating that bepridil exerts antiarrhythmic effects through its acute and chronic application for patients. The aim of this study was to identify the efficacy and the potential mechanism of bepridil on the inward-rectifier potassium channel in neonatal rat cardiomyocytes in acute- and long-term conditions. Bepridil inhibited inward-rectifier potassium current (I K1) as a short-term effect with IC50 of 17 µM. Bepridil also reduced I K1 of neonatal cardiomyocytes when applied for 24 h in the culture medium with IC50 of 2.7 µM. Both a calmodulin inhibitor (W-7) and an inhibitor of calmodulin-kinase II (KN93) reduced I K1 when applied for 24 h as a long-term effect in the same fashion, suggesting that the long-term application of bepridil inhibits I K1 more potently than that of the short-term application through the inhibition of calmodulin kinase II pathway in cardiomyocytes.


Assuntos
Antiarrítmicos/farmacologia , Bepridil/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Células Cultivadas , Potenciais da Membrana , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos Wistar , Sulfonamidas/farmacologia , Fatores de Tempo
11.
No To Hattatsu ; 48(5): 325-31, 2016 09.
Artigo em Japonês | MEDLINE | ID: mdl-30010274

RESUMO

Multiple mutations in Kir6.x and SURx genes have implicated ATP-sensitive potassium (KATP) channels and, as a result, have led to diverse diseases, ranging from diabetes and hyperinsulinism to cardiac arrhythmias and cardiovascular disease. These diseases are referred to as KATP channelopathies. Recently, Cantú syndrome (CS), which was found to be caused by mutations in the ABCC9 or KCNJ8 gene, was newly added to the list of KATP channelopathies. CS is a rare multi-organ disease characterized by congenital hypertrichosis, characteristic face, persistent ductus arteriosus, cardiomegaly, intrauterine overgrowth, and skeletal abnormalities. Congenital hypertrichosis and coarse face have been confirmed in all CS patients. On the other hand, cardiovascular and skeletal abnormalities vary widely in severity, even in some familial cases and in isolated cases sharing the same mutation. Information about genotype-phenotype correlations in CS are described here.


Assuntos
Cardiomegalia/metabolismo , Hipertricose/metabolismo , Canais KATP/metabolismo , Osteocondrodisplasias/metabolismo , Cardiomegalia/genética , Desenho de Fármacos , Humanos , Hipertricose/genética , Canais KATP/genética , Mutação , Osteocondrodisplasias/genética
12.
Pflugers Arch ; 465(2): 247-59, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192368

RESUMO

Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. We showed that the antiprotozoic pentamidine decreased K(IR)2.x carried I(K1) current and that inhibiting protein degradation in the lysosome increased intracellular K(IR)2.1 levels. In this study, we aim to identify and then inhibit preceding steps in clathrin-mediated endocytosis of K(IR)2.1 to further restore normal levels of functional K(IR)2.1 channels. K(IR)2.1 trafficking in HEK293 cells was studied by live cell imaging, immunofluorescence microscopy, and Western blot following pharmacological intervention with dynasore (Dyn), chlorpromazine (CPZ), bafilomycin A1 (Baf), or chloroquine (CQ). K(IR)2.1 function was determined by patch-clamp electrophysiology. CQ induced lysosomal build-up of full length (3.8 ± 0.8-fold) and N-terminal cleaved K(IR)2.1 protein. Baf induced late endosomal build-up of full length protein only (6.1 ± 1.6-fold). CPZ and Dyn increased plasma membrane-localized channel and protein levels (2.6 ± 0.4- and 4.2 ± 1.1-fold, respectively). Dyn increased I(K1) (at -60 mV) from 31 ± 6 to 55 ± 7 pA/pF (N = 9 and 13 respectively, p < 0.05), while the CPZ effect on current density was not testable due to acute I(K1) block. Baf and CQ did not significantly enhance I(K1) densities. Pentamidine (10 µM, 48 h) reduced K(IR)2.1 levels to 0.6 ± 0.1-fold, which could be rescued by Baf (3.2 ± 0.9), CPZ (1.2 ± 0.3), or Dyn (1.2 ± 0.3). Taken together, the clathrin-mediated endocytosis pathway functions in K(IR)2.1 degradation. Pentamidine-induced downregulation of K(IR)2.1 can be rescued at the level of the plasma membrane, implying that acquired trafficking defects can be rescued.


Assuntos
Antiprotozoários/farmacologia , Vesículas Revestidas por Clatrina/metabolismo , Regulação para Baixo , Endocitose/efeitos dos fármacos , Pentamidina/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potenciais de Ação , Membrana Celular/metabolismo , Cloroquina/farmacologia , Clorpromazina/farmacologia , Células HEK293 , Humanos , Hidrazonas/farmacologia , Macrolídeos/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Transporte Proteico/efeitos dos fármacos , Proteólise
13.
J Orthop Surg Res ; 18(1): 310, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37072855

RESUMO

BACKGROUND: An accurate understanding of the mechanical response of ligaments is important for preventing their damage and rupture. To date, ligament mechanical responses are being primarily evaluated using simulations. However, many mathematical simulations construct models of uniform fibre bundles or sheets using merely collagen fibres and ignore the mechanical properties of other components such as elastin and crosslinkers. Here, we evaluated the effect of elastin-specific mechanical properties and content on the mechanical response of ligaments to stress using a simple mathematical model. METHODS: Based on multiphoton microscopic images of porcine knee collateral ligaments, we constructed a simple mathematical simulation model that individually includes the mechanical properties of collagen fibres and elastin (fibre model) and compared with another model that considers the ligament as a single sheet (sheet model). We also evaluated the mechanical response of the fibre model as a function of the elastin content, from 0 to 33.5%. Both ends of the ligament were fixed to a bone, and tensile, shear, and rotational stresses were applied to one of the bones to evaluate the magnitude and distribution of the stress applied to the collagen and elastin at each load. RESULTS: Uniform stress was applied to the entire ligament in the sheet model, whereas in the fibre model, strong stress was applied at the junction between collagen fibres and elastin. Even in the same fibre model, as the elastin content increased from 0 to 14.4%, the maximum stress and displacement applied to the collagen fibres during shear stress decreased by 65% and 89%, respectively. The slope of the stress-strain relationship at 14.4% elastin was 6.5 times greater under shear stress than that of the model with 0% elastin. A positive correlation was found between the stress required to rotate the bones at both ends of the ligament at the same angle and elastin content. CONCLUSIONS: The fibre model, which includes the mechanical properties of elastin, can provide a more precise evaluation of the stress distribution and mechanical response. Elastin is responsible for ligament rigidity during shear and rotational stress.


Assuntos
Elastina , Ligamentos , Suínos , Animais , Elastina/fisiologia , Ligamentos/fisiologia , Colágeno , Simulação por Computador , Articulação do Joelho , Estresse Mecânico
14.
Genes (Basel) ; 14(2)2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36833398

RESUMO

Coronary artery disease (CAD) is a common and fatal cardiovascular disease. Among known CAD risk factors, miRNA polymorphisms, such as Has-miR-143 (rs41291957 C>G) and Has-miR-146a (rs2910164 G>A), have emerged as important genetic markers of CAD. Despite many genetic association studies in multiple populations, no study assessing the association between CAD risk and SNPs of miR-143 and miR-146 was documented in the Japanese people. Therefore, using the TaqMan SNP assay, we investigated two SNP genotypes in 151 subjects with forensic autopsy-proven CAD. After pathological observation, we used ImageJ software to assess the degree of coronary artery atresia. Moreover, the genotypes and miRNA content of the two groups of samples with atresia <10% and >10% were analyzed. The results showed that the CC genotype of rs2910164 was more frequent in patients with CAD than in controls, which was associated with the risk of CAD in the study population. However, Has-miR-143 rs41291957 genotype did not show a clear correlation with the risk of CAD.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , Humanos , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença , Povo Asiático , Estudos de Casos e Controles , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único
15.
Yonago Acta Med ; 66(1): 192-195, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36811027

RESUMO

Although acute cardiac tamponade is one of the major problems in clinical practice, a suitable animal model is still lacking. We tried to create acute cardiac tamponade in macaques by echo-guided catheter manipulation. A 13-year-old male macaque was anesthetized, and a long sheath was inserted into the left ventricle via the left carotid artery under the guidance of transthoracic echocardiography. The sheath was then inserted into the orifice of the left coronary artery to perforate the proximal site of the left anterior descending branch. A cardiac tamponade was successfully created. Injection of diluted contrast agent into the pericardial space via a catheter made it possible to clearly distinguish between the hemopericardium and the surrounding tissues on postmortem computed tomography. This procedure did not need an X-ray imaging system during catheterization. Our present model would help us examine the intrathoracic organs in the presence of acute cardiac tamponade.

16.
Sci Rep ; 13(1): 22100, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092851

RESUMO

Liver fibrosis is assessed mainly by conventional staining or second harmonic generation (SHG) microscopy, which can only provide collagen content in fibrotic area. We propose to use polarization-resolved SHG (PR-SHG) microscopy to quantify liver fibrosis in terms of collagen fiber orientation and crystallization. Liver samples obtained from autopsy cases with fibrosis stage of F0-F4 were evaluated with an SHG microscope, and 12 consecutive PR-SHG images were acquired while changing the polarization azimuth angle of the irradiated laser from 0° to 165° in 15° increments using polarizer. The fiber orientation angle (φ) and degree (ρ) of collagen were estimated from the images. The SHG-positive area increased as the fibrosis stage progressed, which was well consistent with Sirius Red staining. The value of φ was random regardless of fibrosis stage. The mean value of ρ (ρ-mean), which represents collagen fiber crystallinity, varied more as fibrosis progressed to stage F3, and converged to a significantly higher value in F4 than in other stages. Spatial dispersion of ρ (ρ-entropy) also showed increased variation in the stage F3 and decreased variation in the stage F4. It was shown that PR-SHG could provide new information on the properties of collagen fibers in human liver fibrosis.


Assuntos
Microscopia de Geração do Segundo Harmônico , Humanos , Microscopia de Geração do Segundo Harmônico/métodos , Colágeno , Cirrose Hepática , Refração Ocular , Corantes
17.
Am J Physiol Heart Circ Physiol ; 303(5): H578-86, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22707561

RESUMO

Spiral-wave (SW) reentry is a major organizing principle of ventricular tachycardia/fibrillation (VT/VF). We tested a hypothesis that pharmacological modification of gap junction (GJ) conductance affects the stability of SW reentry in a two-dimensional (2D) epicardial ventricular muscle layer prepared by endocardial cryoablation of Langendorff-perfused rabbit hearts. Action potential signals were recorded and analyzed by high-resolution optical mapping. Carbenoxolone (CBX; 30 µM) and rotigaptide (RG, 0.1 µM) were used to inhibit and enhance GJ coupling, respectively. CBX decreased the space constant (λ) by 36%, whereas RG increased it by 22-24% (n = 5; P < 0.01). During centrifugal propagation, there was a linear relationship between the wavefront curvature (κ) and local conduction velocity (LCV): LCV = LCV(0) - D·κ (D, diffusion coefficient; LCV(0), LCV at κ = 0). CBX decreased LCV(0) and D by 27 ± 3 and 57 ± 3%, respectively (n = 5; P < 0.01). RG increased LCV(0) and D by 18 ± 3 and 54 ± 5%, respectively (n = 5, P < 0.01). The regression lines with and without RG crossed, resulting in a paradoxical decrease of LCV with RG at κ > ~60 cm(-1). SW reentry induced after CBX was stable, and the incidence of sustained VTs (>30 s) increased from 38 ± 4 to 85 ± 4% after CBX (n = 18; P < 0.01). SW reentry induced after RG was characterized by decremental conduction near the rotation center, prominent drift and self-termination by collision with the anatomical boundaries, and the incidence of sustained VTs decreased from 40 ± 5 to 17 ± 6% after RG (n = 13; P < 0.05). These results suggest that decreased intercellular coupling stabilizes SW reentry in 2D cardiac muscle, whereas increased coupling facilitates its early self-termination.


Assuntos
Antiarrítmicos/farmacologia , Carbenoxolona/farmacologia , Comunicação Celular/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Sistema de Condução Cardíaco/efeitos dos fármacos , Oligopeptídeos/farmacologia , Taquicardia Ventricular/prevenção & controle , Fibrilação Ventricular/prevenção & controle , Potenciais de Ação , Animais , Modelos Animais de Doenças , Técnicas Eletrofisiológicas Cardíacas , Junções Comunicantes/metabolismo , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Perfusão , Coelhos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia , Imagens com Corantes Sensíveis à Voltagem
18.
J Pharmacol Sci ; 119(1): 52-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22641132

RESUMO

We tested a hypothesis that an enhancement of I(Ks) may play a pivotal role in ventricular proarrhythmia under high sympathetic activity. A 2-dimensional ventricular muscle layer was prepared in rabbit hearts, and action potential signals were analyzed by optical mapping. During constant stimulation, isoproterenol (ISP, 0.1 µM) significantly shortened action potential duration (APD); chromanol 293B (30 µM), a selective I(Ks)-blocker, reversed the APD shortening. VTs induced in the presence of ISP lasted longer than in the control, and this was reversed by 293B. E-4031 (0.1 µM), a selective I(Kr)-blocker, did not cause such reversal. Spiral-wave (SW) reentry with ISP was characterized by more stable rotation around a shorter functional block line (FBL) than in the control. After application of 293B, SW reentry was destabilized, and rotation around a longer FBL with prominent drift reappeared. The APD abbreviation by ISP close to the rotation center was more pronounced than in the periphery, leading to an opposite APD gradient (center < periphery) compared with controls. This effect was also reversed by 293B. In conclusion, ß-adrenergic stimulation stabilizes SW reentry most likely though an enhancement of I(Ks). Blockade of I(Ks) may be a promising therapeutic modality in prevention of ventricular tachyarrhythmias under high sympathetic activity.


Assuntos
Adrenérgicos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/prevenção & controle , Cromanos/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Miocárdio/metabolismo , Piperidinas/farmacologia , Piridinas/farmacologia , Coelhos , Sulfonamidas/farmacologia , Sistema Nervoso Simpático/metabolismo
19.
Heart Rhythm ; 19(2): 318-329, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34678525

RESUMO

BACKGROUND: Electrical storm (ES) is a life-threatening emergency in patients at high risk of ventricular tachycardia/ventricular fibrillation (VF), but the pathophysiology and molecular basis are poorly understood. OBJECTIVE: The purpose of this study was to explore the electrophysiological substrate for experimental ES. METHODS: A model was created by inducing chronic complete atrioventricular block in defibrillator-implanted rabbits, which recapitulates QT prolongation, torsades des pointes (TdP), and VF episodes. RESULTS: Optical mapping revealed island-like regions with action potential duration (APD) prolongation in the left ventricle, leading to increased spatial APD dispersion, in rabbits with ES (defined as ≥3 VF episodes/24 h). The maximum APD and its dispersion correlated with the total number of VF episodes in vivo. TdP was initiated by an ectopic beat that failed to enter the island and formed a reentrant wave and perpetuated by rotors whose centers swirled in the periphery of the island. Epinephrine exacerbated the island by prolonging APD and enhancing APD dispersion, which was less evident after late Na+ current blockade with 10 µM ranolazine. Nonsustained ventricular tachycardia in a non-ES rabbit heart with homogeneous APD prolongation resulted from multiple foci with an electrocardiographic morphology different from TdP driven by drifting rotors in ES rabbit hearts. The neuronal Na+-channel subunit NaV1.8 was upregulated in ES rabbit left ventricular tissues and expressed within the myocardium corresponding to the island location in optically mapped ES rabbit hearts. The NaV1.8 blocker A-803467 (10 mg/kg, intravenously) attenuated QT prolongation and suppressed epinephrine-evoked TdP. CONCLUSION: A tissue island with enhanced refractoriness contributes to the generation of drifting rotors that underlies ES in this model. NaV1.8-mediated late Na+ current merits further investigation as a contributor to the substrate for ES.


Assuntos
Bloqueio Atrioventricular/fisiopatologia , Taquicardia Ventricular/fisiopatologia , Torsades de Pointes/fisiopatologia , Potenciais de Ação , Animais , Bloqueio Atrioventricular/tratamento farmacológico , Desfibriladores Implantáveis , Modelos Animais de Doenças , Síndrome do QT Longo/fisiopatologia , Coelhos , Ranolazina/farmacologia
20.
Am J Physiol Heart Circ Physiol ; 300(2): H565-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21148762

RESUMO

Congestive heart failure (CHF) predisposes to ventricular fibrillation (VF) in association with electrical remodeling of the ventricle. However, much remains unknown about the rate-dependent electrophysiological properties in a failing heart. Action potential properties in the left ventricular subepicardial muscles during dynamic pacing were examined with optical mapping in pacing-induced CHF (n=18) and control (n=17) rabbit hearts perfused in vitro. Action potential durations (APDs) in CHF were significantly longer than those observed for controls at basic cycle lengths (BCLs)>1,000 ms but significantly shorter at BCLs<400 ms. Spatial APD dispersions were significantly increased in CHF versus control (by 17-81%), and conduction velocity was significantly decreased in CHF (by 6-20%). In both groups, high-frequency stimulation (BCLs<150 ms) always caused spatial APD alternans; spatially concordant alternans and spatially discordant alternans (SDA) were induced at 60% and 40% in control, respectively, whereas 18% and 82% in CHF. SDA in CHF caused wavebreaks followed by reentrant excitations, giving rise to VF. Incidence of ventricular tachycardia/VFs elicited by high-frequency dynamic pacing (BCLs<150 ms) was significantly higher in CHF versus control (93% vs. 20%). In CHF, left ventricular subepicardial muscles show significant APD shortenings at short BCLs favoring reentry formations following wavebreaks in association with SDA. High-frequency excitation itself may increase the vulnerability to VF in CHF.


Assuntos
Potenciais de Ação/fisiologia , Insuficiência Cardíaca/fisiopatologia , Animais , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/fisiologia , Estimulação Cardíaca Artificial , Fenômenos Eletrofisiológicos , Ventrículos do Coração , Técnicas In Vitro , Microeletrodos , Coelhos , Fibrilação Ventricular/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA