Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Genes Cells ; 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39435529

RESUMO

Alport syndrome (AS) is a hereditary disease caused by mutations in the COL4A5 gene and leads to chronic kidney disease. Currently, no specific treatment has been developed. However, a recent study using AS-model mice demonstrated that the exon skipping method could partially rescue the symptoms. In this study, we evaluated the effects of the exon skipping method using kidney organoids generated from AS-patient-derived induced pluripotent stem cells (AS-iPSCs). We generated kidney organoids from AS-iPSCs, which exhibited nephron structures. As expected, the C-terminus of COL4A5 was not expressed in AS-organoids. Interestingly, anti-sense oligonucleotides restored the expression of the C-terminus of COL4A5 in vitro. Next, we transplanted AS-organoids into mice and evaluated glomerular basement membrane formation in vivo. We found that AS-organoids formed a lower slit diaphragm ratio compared to control organoids. Finally, we assessed the effects of exon skipping on transplanted organoids but observed minimum effects. These studies suggest that AS-iPSCs can generate kidney organoids lacking the C-terminus of COL4A5, and that exon skipping can induce its expression in vitro.

2.
Dev Biol ; 498: 49-60, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36963625

RESUMO

The prostate is a male reproductive gland which secretes prostatic fluid that enhances male fertility. During development and instigated by fetal testosterone, prostate cells arise caudal to the bladder at the urogenital sinus (UGS), when the urogenital mesenchyme (UGM) secretes signals to the urogenital epithelium (UGE). These initial mesenchymal signals induce prostate-specific gene expression in the UGE, after which epithelial progenitor cells form prostatic buds. Although many important factors for prostate development have been described using UGS organ cultures, those necessary and sufficient for prostate budding have not been clearly identified. This has been in part due to the difficulty to dissect the intricate signaling and feedback between epithelial and mesenchymal UGS cells. In this study, we separated the UGM from the UGE and tested candidate growth factors to show that when FGF10 is present, testosterone is not required for initiating prostate budding from the UGE. Moreover, in the presence of low levels of FGF10, canonical WNT signaling enhances the expression of several prostate progenitor markers in the UGE before budding of the prostate occurs. At the later budding stage, higher levels of FGF10 are required to increase budding and retinoic acid is indispensable for the upregulation of prostate-specific genes. Lastly, we show that under optimized conditions, female UGE can be instructed towards a prostatic fate, and in vitro generated prostate buds from male UGE can differentiate into a mature prostate epithelium after in vivo transplantation. Taken together, our results clarify the signals that can induce fetal prostate buds in the urogenital epithelium in the absence of the surrounding, instructive mesenchyme.


Assuntos
Próstata , Sistema Urogenital , Camundongos , Masculino , Feminino , Animais , Epitélio/metabolismo , Genitália Masculina/metabolismo , Testosterona/metabolismo
3.
Nat Methods ; 16(1): 79-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573816

RESUMO

The utility of human pluripotent stem cell-derived kidney organoids relies implicitly on the robustness and transferability of the protocol. Here we analyze the sources of transcriptional variation in a specific kidney organoid protocol. Although individual organoids within a differentiation batch showed strong transcriptional correlation, we noted significant variation between experimental batches, particularly in genes associated with temporal maturation. Single-cell profiling revealed shifts in nephron patterning and proportions of component cells. Distinct induced pluripotent stem cell clones showed congruent transcriptional programs, with interexperimental and interclonal variation also strongly associated with nephron patterning. Epithelial cells isolated from organoids aligned with total organoids at the same day of differentiation, again implicating relative maturation as a confounder. This understanding of experimental variation facilitated an optimized analysis of organoid-based disease modeling, thereby increasing the utility of kidney organoids for personalized medicine and functional genomics.


Assuntos
Rim/metabolismo , Organoides/metabolismo , Diferenciação Celular/genética , Células Clonais , Células Epiteliais/citologia , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/citologia , Nefropatias/genética , Nefropatias/patologia , Modelos Biológicos , Organoides/citologia , Reprodutibilidade dos Testes , Análise de Célula Única , Transcrição Gênica
4.
FASEB J ; 35(1): e21262, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33368618

RESUMO

The excretion and reabsorption of uric acid both to and from urine are tightly regulated by uric acid transporters. Metabolic syndrome conditions, such as obesity, hypercholesterolemia, and insulin resistance, are believed to regulate the expression of uric acid transporters and decrease the excretion of uric acid. However, the mechanisms driving cholesterol impacts on uric acid transporters have been unknown. Here, we show that cholesterol metabolite 27-hydroxycholesterol (27HC) upregulates the uric acid reabsorption transporter URAT1 encoded by SLC22A12 via estrogen receptors (ER). Transcriptional motif analysis showed that the SLC22A12 gene promoter has more estrogen response elements (EREs) than other uric acid reabsorption transporters such as SLC22A11 and SLC22A13, and 27HC-activated SLC22A12 gene promoter via ER through EREs. Furthermore, 27HC increased SLC22A12 gene expression in human kidney organoids. Our results suggest that in hypercholesterolemic conditions, elevated levels of 27HC derived from cholesterol induce URAT1/SLC22A12 expression to increase uric acid reabsorption, and thereby, could increase serum uric acid levels.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Rim/metabolismo , Transportadores de Ânions Orgânicos/biossíntese , Proteínas de Transporte de Cátions Orgânicos/biossíntese , Receptores de Estrogênio/metabolismo , Humanos , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Organoides/metabolismo , Receptores de Estrogênio/genética
5.
Nature ; 526(7574): 564-8, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26444236

RESUMO

The human kidney contains up to 2 million epithelial nephrons responsible for blood filtration. Regenerating the kidney requires the induction of the more than 20 distinct cell types required for excretion and the regulation of pH, and electrolyte and fluid balance. We have previously described the simultaneous induction of progenitors for both collecting duct and nephrons via the directed differentiation of human pluripotent stem cells. Paradoxically, although both are of intermediate mesoderm in origin, collecting duct and nephrons have distinct temporospatial origins. Here we identify the developmental mechanism regulating the preferential induction of collecting duct versus kidney mesenchyme progenitors. Using this knowledge, we have generated kidney organoids that contain nephrons associated with a collecting duct network surrounded by renal interstitium and endothelial cells. Within these organoids, individual nephrons segment into distal and proximal tubules, early loops of Henle, and glomeruli containing podocytes elaborating foot processes and undergoing vascularization. When transcription profiles of kidney organoids were compared to human fetal tissues, they showed highest congruence with first trimester human kidney. Furthermore, the proximal tubules endocytose dextran and differentially apoptose in response to cisplatin, a nephrotoxicant. Such kidney organoids represent powerful models of the human organ for future applications, including nephrotoxicity screening, disease modelling and as a source of cells for therapy.


Assuntos
Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Néfrons/citologia , Néfrons/embriologia , Organogênese , Organoides/citologia , Animais , Técnicas de Cocultura , Células Alimentadoras , Feto/anatomia & histologia , Feto/citologia , Feto/embriologia , Fibroblastos/citologia , Humanos , Túbulos Renais Coletores/citologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/embriologia , Túbulos Renais Proximais/fisiologia , Mesoderma/citologia , Camundongos , Néfrons/anatomia & histologia , Néfrons/fisiologia , Organoides/embriologia , Técnicas de Cultura de Tecidos
6.
Development ; 144(12): 2099-2103, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28634269

RESUMO

From March 27-29 2017, the RIKEN Center for Developmental Biology held a symposium entitled 'Towards Understanding Human Development, Heredity, and Evolution' in Kobe, Japan. Recent advances in technologies including stem cell culture, live imaging, single-cell approaches, next-generation sequencing and genome editing have led to an expansion in our knowledge of human development. Organized by Yoshiya Kawaguchi, Mitinori Saitou, Mototsugu Eiraku, Tomoya Kitajima, Fumio Matsuzaki, Takashi Tsuji and Edith Heard, the symposium covered a broad range of topics including human germline development, epigenetics, organogenesis and evolution. This Meeting Review provides a summary of this timely and exciting symposium, which has convinced us that we are moving into the era of science targeted on humans.


Assuntos
Desenvolvimento Humano , Animais , Evolução Biológica , Biologia do Desenvolvimento , Desenvolvimento Embrionário , Epigênese Genética , Hereditariedade , Humanos , Organogênese
7.
Development ; 142(11): 1937-47, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26015537

RESUMO

The mammalian kidney, the metanephros, is a mesodermal organ classically regarded as arising from the intermediate mesoderm (IM). Indeed, both the ureteric bud (UB), which gives rise to the ureter and the collecting ducts, and the metanephric mesenchyme (MM), which forms the rest of the kidney, derive from the IM. Based on an understanding of the signalling molecules crucial for IM patterning and kidney morphogenesis, several studies have now generated UB or MM, or both, in vitro via the directed differentiation of human pluripotent stem cells. Although these results support the IM origin of the UB and the MM, they challenge the simplistic view of a common progenitor for these two populations, prompting a reanalysis of early patterning events within the IM. Here, we review our understanding of the origin of the UB and the MM in mouse, and discuss how this impacts on kidney regeneration strategies and furthers our understanding of human development.


Assuntos
Rim/embriologia , Mamíferos/embriologia , Organogênese , Animais , Padronização Corporal , Humanos , Rim/citologia , Mesoderma/embriologia , Técnicas de Cultura de Órgãos
8.
Dev Biol ; 420(2): 210-220, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27565022

RESUMO

Directed differentiation of human pluripotent stem cells (hPSCs) can provide us any required tissue/cell types by recapitulating the development in vitro. The kidney is one of the most challenging organs to generate from hPSCs as the kidney progenitors are composed of at least 4 different cell types, including nephron, collecting duct, endothelial and interstitium progenitors, that are developmentally distinguished populations. Although the actual developmental process of the kidney during human embryogenesis has not been clarified yet, studies using model animals accumulated knowledge about the origins of kidney progenitors. The implications of these findings for the directed differentiation of hPSCs into the kidney include the mechanism of the intermediate mesoderm specification and its patterning along with anteroposterior axis. Using this knowledge, we previously reported successful generation of hPSCs-derived kidney organoids that contained all renal components and modelled human kidney development in vitro. In this review, we explain the developmental basis of the strategy behind this differentiation protocol and compare strategies of studies that also recently reported the induction of kidney cells from hPSCs. We also discuss the characterization of such kidney organoids and limitations and future applications of this technology.


Assuntos
Rim/embriologia , Organoides/embriologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Humanos , Rim/citologia , Rim/fisiologia , Mesoderma/citologia , Mesoderma/embriologia , Modelos Biológicos , Técnicas de Cultura de Órgãos/métodos , Técnicas de Cultura de Órgãos/tendências , Organogênese , Organoides/citologia , Organoides/fisiologia , Linha Primitiva/citologia , Linha Primitiva/embriologia
11.
BMC Nephrol ; 16: 152, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26374634

RESUMO

BACKGROUND: Genetic renal diseases (GRD) are a heterogeneous and incompletely understood group of disorders accounting for approximately 10 % of those diagnosed with kidney disease. The advent of Next Generation sequencing and new approaches to disease modelling may allow the identification and validation of novel genetic variants in patients with previously incompletely explained or understood GRD. METHODS/DESIGN: This study will recruit participants in families/trios from a multidisciplinary sub-specialty Renal Genetics Clinic where known genetic causes of GRD have been excluded or where genetic testing is not available. After informed patient consent, whole exome and/or genome sequencing will be performed with bioinformatics analysis undertaken using a customised variant assessment tool. A rigorous process for participant data management will be undertaken. Novel genetic findings will be validated using patient-derived induced pluripotent stem cells via differentiation to renal and relevant extra-renal tissue phenotypes in vitro. A process for managing the risk of incidental findings and the return of study results to participants has been developed. DISCUSSION: This investigator-initiated approach brings together experts in nephrology, clinical and molecular genetics, pathology and developmental biology to discover and validate novel genetic causes for patients in Australia affected by GRD without a known genetic aetiology or pathobiology.


Assuntos
Nefropatias/genética , Humanos , Projetos de Pesquisa , Estudos de Validação como Assunto
12.
Curr Opin Organ Transplant ; 20(2): 178-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25856180

RESUMO

PURPOSE OF REVIEW: Recent studies on the directed differentiation of human pluripotent stem cells report tissue self-organization in vitro such that multiple component cell types arise in concert and arrange with respect to each, thereby recapitulating the morphogenetic events typical for that organ. Such self-organization has generated pituitary, optic cup, liver, brain, intestine, stomach and now kidney. Here, we will describe the cell types present within the self-organizing kidney, how these signal to each other to form a kidney organoid and the potential applications of kidney organoids. RECENT FINDINGS: Protocols for the directed differentiation of human pluripotent cells focus on recapitulating the developmental steps required during embryogenesis. In the case of the kidney, this has involved mesodermal differentiation through posterior primitive streak and intermediate mesoderm. Recent studies have observed the simultaneous formation of both ureteric epithelium and nephron progenitors in vitro. These component cell types signal to each other to initiate nephron formation as would occur during development. SUMMARY: The generation of kidney organoids is a major advance in nephrology. Such organoids may be useful for disease modelling and drug screening. Ultimately, our capacity to generate organoids may extend to the development of tissues for transplantation.


Assuntos
Rim/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Humanos , Morfogênese
13.
Pediatr Nephrol ; 29(4): 543-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24026757

RESUMO

Access to human pluripotent cells theoretically provides a renewable source of cells that can give rise to any required cell type for use in cellular therapy or bioengineering. However, successfully directing this differentiation remains challenging for most desired endpoints cell type, including renal cells. This challenge is compounded by the difficulty in identifying the required cell type in vitro and the multitude of renal cell types required to build a kidney. Here we review our understanding of how the embryo goes about specifying the cells of the kidney and the progress to date in adapting this knowledge for the recreation of nephron progenitors and their mature derivatives from pluripotent cells.


Assuntos
Diferenciação Celular/fisiologia , Rim/embriologia , Organogênese/fisiologia , Células-Tronco Pluripotentes/citologia , Animais , Humanos , Rim/citologia , Engenharia Tecidual
14.
J Am Soc Nephrol ; 24(9): 1424-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23766537

RESUMO

Direct reprogramming involves the enforced re-expression of key transcription factors to redefine a cellular state. The nephron progenitor population of the embryonic kidney gives rise to all cells within the nephron other than the collecting duct through a mesenchyme-to-epithelial transition, but this population is exhausted around the time of birth. Here, we sought to identify the conditions under which adult proximal tubule cells could be directly transcriptionally reprogrammed to nephron progenitors. Using a combinatorial screen for lineage-instructive transcription factors, we identified a pool of six genes (SIX1, SIX2, OSR1, EYA1, HOXA11, and SNAI2) that activated a network of genes consistent with a cap mesenchyme/nephron progenitor phenotype in the adult proximal tubule (HK2) cell line. Consistent with these reprogrammed cells being nephron progenitors, we observed differential contribution of the reprogrammed population into the Six2(+) nephron progenitor fields of an embryonic kidney explant. Dereplication of the pool suggested that SNAI2 can suppress E-CADHERIN, presumably assisting in the epithelial-to-mesenchymal transition (EMT) required to form nephron progenitors. However, neither TGFß-induced EMT nor SNAI2 overexpression alone was sufficient to create this phenotype, suggesting that additional factors are required. In conclusion, these results suggest that reinitiation of kidney development from a population of adult cells by generating embryonic progenitors may be feasible, opening the way for additional cellular and bioengineering approaches to renal repair and regeneration.


Assuntos
Diferenciação Celular/fisiologia , Túbulos Renais Proximais/citologia , Néfrons/embriologia , Células-Tronco/citologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/genética , Caderinas/genética , Caderinas/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Testes Genéticos/métodos , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Túbulos Renais Proximais/fisiologia , Néfrons/citologia , Fenótipo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
15.
iScience ; 27(9): 110760, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39286490

RESUMO

Renal transporters play critical roles in predicting potential drug-drug interactions. However, current in vitro models often fail to adequately express these transporters, particularly solute carrier proteins, including organic anion transporters (OAT1/3), and organic cation transporter 2 (OCT2). Here, we developed a hiPSC-derived kidney organoids-based proximal tubule-on-chip (OPTC) model that emulates in vivo renal physiology to assess transporter function. Compared to chips based on immortalized cells, OPTC derived from the two most commonly used differentiation protocols exhibited significant improvement in expression level and polarity of OAT1/3 and OCT2. Hence, the OPTC demonstrates enhanced functionality in efflux and uptake assessments, and nephrotoxicity. Furthermore, these functionalities are diminished upon adding inhibitors during substrate-inhibitor interactions, which were closer to in vivo observations. Overall, these results support that OPTC can reliably assess the role of renal transporters in drug transport and nephrotoxicity, paving the way for personalized models to assess renal transport and disease modeling.

16.
J Physiol Sci ; 74(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166558

RESUMO

In humans, uric acid is an end-product of purine metabolism. Urate excretion from the human kidney is tightly regulated by reabsorption and secretion. At least eleven genes have been identified as human renal urate transporters. However, it remains unclear whether all renal tubular cells express the same set of urate transporters. Here, we show renal tubular cells are divided into three distinct cell populations for urate handling. Analysis of healthy human kidneys at single-cell resolution revealed that not all tubular cells expressed the same set of urate transporters. Only 32% of tubular cells were related to both reabsorption and secretion, while the remaining tubular cells were related to either reabsorption or secretion at 5% and 63%, respectively. These results provide physiological insight into the molecular function of the transporters and renal urate handling on single-cell units. Our findings suggest that three different cell populations cooperate to regulate urate excretion from the human kidney, and our proposed framework is a step forward in broadening the view from the molecular to the cellular level of transport capacity.


Assuntos
Rim , Ácido Úrico , Humanos , Ácido Úrico/metabolismo , Rim/metabolismo , Transporte Biológico
17.
Commun Biol ; 6(1): 483, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142732

RESUMO

Of late, numerous microphysiological systems have been employed to model the renal proximal tubule. Yet there is lack of research on refining the functions of the proximal tubule epithelial layer-selective filtration and reabsorption. In this report, pseudo proximal tubule cells extracted from human-induced pluripotent stem cell-derived kidney organoids are combined and cultured with immortalized proximal tubule cells. It is shown that the cocultured tissue is an impervious epithelium that offers improved levels of certain transporters, extracellular matrix proteins collagen and laminin, and superior glucose transport and P-glycoprotein activity. mRNA expression levels higher than those obtained from each cell type were detected, suggesting an anomalous synergistic crosstalk between the two. Alongside, the improvements in morphological characteristics and performance of the immortalized proximal tubule tissue layer exposed, upon maturation, to human umbilical vein endothelial cells are thoroughly quantified and compared. Glucose and albumin reabsorption, as well as xenobiotic efflux rates through P-glycoprotein were all improved. The data presented abreast highlight the advantages of the cocultured epithelial layer and the non-iPSC-based bilayer. The in vitro models presented herein can be helpful in personalized nephrotoxicity studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Rim/metabolismo , Organoides/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Glucose/metabolismo
19.
Curr Opin Genet Dev ; 75: 101944, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35785592

RESUMO

Organoids are being widely introduced as novel research models in multiple research fields. Human-induced pluripotent stem cells-derived kidney organoids became an indispensable tool to study human kidney development, model various diseases and infections leading to kidney damage, and offer a new route towards better drug development and validation, personalized drug screening, and regenerative medicine. In this review, we provide an update of the most recent developments in kidney organoid induction: their main goals, advantages, and shortcomings. We further discuss their current applications in providing modeling and treatment avenues to various kidney injuries, their use in genome-wide screening of kidney diseases, and the cell interactions occurring in these kidney structures.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Humanos , Rim , Medicina Regenerativa
20.
Elife ; 112022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154671

RESUMO

The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body. Here we employ human embryonic stem cell differentiation to define how neuromesodermal progenitor (NMP)-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC/spinal cord regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. This initial posteriorisation event is succeeded by a second phase of trunk HOX gene control that marks the differentiation of NMPs toward their TBXT-negative NC/spinal cord derivatives and relies predominantly on FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control.


Assuntos
Mesoderma , Crista Neural , Diferenciação Celular/genética , Humanos , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA