Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273579

RESUMO

Proteins, saccharides, and low molecular organic compounds in the blood, urine, and saliva could potentially serve as biomarkers for diseases related to diet, lifestyle, and the use of illegal drugs. Lifestyle-related diseases (LSRDs) such as diabetes mellitus (DM), non-alcoholic steatohepatitis, cardiovascular disease, hypertension, kidney disease, and osteoporosis could develop into life-threatening conditions. Therefore, there is an urgent need to develop biomarkers for their early diagnosis. Advanced glycation end-products (AGEs) are associated with LSRDs and may induce/promote LSRDs. The presence of AGEs in body fluids could represent a biomarker of LSRDs. Urine samples could potentially be used for detecting AGEs, as urine collection is convenient and non-invasive. However, the detection and identification of AGE-modified proteins in the urine could be challenging, as their concentrations in the urine might be extremely low. To address this issue, we propose a new analytical approach. This strategy employs a method previously introduced by us, which combines slot blotting, our unique lysis buffer named Takata's lysis buffer, and a polyvinylidene difluoride membrane, in conjunction with electrospray ionization-mass spectrometry (ESI)/matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). This novel strategy could be used to detect AGE-modified proteins, AGE-modified peptides, and free-type AGEs in urine samples.


Assuntos
Biomarcadores , Produtos Finais de Glicação Avançada , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Produtos Finais de Glicação Avançada/urina , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Biomarcadores/urina , Espectrometria de Massas por Ionização por Electrospray/métodos
2.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000424

RESUMO

Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.


Assuntos
Doenças Cardiovasculares , Produtos Finais de Glicação Avançada , Miócitos Cardíacos , Produtos Finais de Glicação Avançada/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Camundongos
3.
Biol Pharm Bull ; 44(10): 1399-1402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602548

RESUMO

Nonalcoholic steatohepatitis (NASH), the aggressive form of the most common chronic liver disease nonalcoholic fatty liver disease, is characterized by inflammation and damage in the liver. Although hepatocyte injury and cell death have been identified as cardinal pathological features of NASH, its pathogenesis has not yet been elucidated in detail. Immortalized cell lines and primary cultured cells have been used as in vitro models of NASH. However, these cells have several disadvantages, such as specialized characteristics by immortalization or limited growth potential. To overcome these difficulties and develop a strategy to analyze the pathology of NASH, we employed hepatocyte-like cells differentiated from human induced pluripotent stem cells (hiPSC-HLCs) as an in vitro model of NASH to clarify the intracellular effects of glyceraldehyde-derived advanced glycation end-products (AGEs), also named toxic AGEs (TAGE). The viability of hiPSC-HLCs decreased with the accumulation of TAGE in the cells, which was consistent with previous findings on human hepatocellular carcinoma cells and human primary cultured hepatocytes. In addition, the TAGE accumulation up-regulated the expression of inflammation-related genes (interleukin 6, interleukin 8, and monocyte chemoattractant protein-1) in hiPSC-HLCs. These results indicated that the accumulation of TAGE induced hiPSC-HLC cytotoxicity and inflammation, which are features of the pathology of NASH. Therefore, we suggest the use of hiPSC-HLCs as an important strategy for analyses of the pathology of NASH.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Hepatócitos/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Diferenciação Celular , Hepatócitos/imunologia , Humanos , Células-Tronco Pluripotentes Induzidas , Hepatopatia Gordurosa não Alcoólica/patologia
4.
FASEB J ; 33(6): 7387-7402, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30860871

RESUMO

Glucocorticoids (GCs) potently induce T-cell apoptosis in a GC receptor (GR)-dependent manner and are used to control lymphocyte function in clinical practice. However, its downstream pathways remain controversial. Here, we showed that GC-induced transcript 1 (GLCCI1) is a novel downstream molecule of the GC-GR cascade that acts as an antiapoptotic mediator in thymic T cells. GLCCI1 was highly phosphorylated and colocalized with microtubules in GLCCI1-transfected human embryonic kidney QBI293A cells. GR-dependent up-regulation of GLCCI1 was associated with GC-induced proapoptotic events in a cultured thymocyte cell line. However, GLCCI1 knockdown in a thymocyte cell line led to apoptosis. Consistently, transgenic mice overexpressing human GLCCI1 displayed enlarged thymi that consisted of larger numbers of thymocytes. Further molecular characterization showed that GLCCI1 bound to both dynein light chain LC8-type 1 (LC8) and its functional kinase, p21-protein activated kinase 1 (PAK1), thereby inhibiting the kinase activity of PAK1 toward LC8 phosphorylation, a crucial event in apoptotic signaling. GLCCI1 induction facilitated LC8 dimer formation and reduced Bim expression. Thus, GLCCI1 is a candidate factor involved in apoptosis regulation of thymic T cells.-Kiuchi, Z., Nishibori, Y., Kutsuna, S., Kotani, M., Hada, I., Kimura, T., Fukutomi, T., Fukuhara, D., Ito-Nitta, N., Kudo, A., Takata, T., Ishigaki, Y., Tomosugi, N., Tanaka, H., Matsushima, S., Ogasawara, S., Hirayama, Y., Takematsu, H., Yan, K. GLCCI1 is a novel protector against glucocorticoid-induced apoptosis in T cells.


Assuntos
Apoptose/fisiologia , Glucocorticoides/fisiologia , Receptores de Glucocorticoides/fisiologia , Linfócitos T/citologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/biossíntese , Proteína 11 Semelhante a Bcl-2/genética , Linhagem Celular , Dineínas do Citoplasma/metabolismo , Dimerização , Regulação para Baixo , Técnicas de Silenciamento de Genes , Glucocorticoides/farmacologia , Humanos , Hipertrofia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/metabolismo , Fosforilação , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Receptores de Glucocorticoides/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais/fisiologia , Timo/patologia , Quinases Ativadas por p21/metabolismo
5.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660150

RESUMO

Hepatocyte cell death is a key process in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the factors responsible for and mechanisms underlying NASH-related cell death have not yet been elucidated in detail. We herein investigated the effects of intracellular glyceraldehyde (GA)-derived advanced glycation end-products (AGEs), named toxic AGEs (TAGE), on the production of reactive oxygen species (ROS), which have been implicated in the pathogenesis of NASH. Cell death related to intracellular TAGE accumulation was eliminated in the hepatocyte carcinoma cell line HepG2 by the antioxidant effects of N-acetyl-L-cysteine. The intracellular accumulation of TAGE increased ROS production and the expression of Nrf2, including its downstream gene. These results suggest that ROS are produced in association with the accumulation of TAGE and are a direct trigger for cell death. We also investigated the factors responsible for these increases in ROS. Catalase activity did not decrease with the accumulation of TAGE, while mitochondrial membrane depolarization was enhanced in cells treated with GA. These results indicate that TAGE play an important role in mitochondrial abnormalities and increases in ROS production, both of which are characteristic features of NASH. The suppression of TAGE accumulation has potential as a new therapeutic target in the progression of NASH.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carcinoma Hepatocelular/metabolismo , Morte Celular/fisiologia , Linhagem Celular Tumoral , Progressão da Doença , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
6.
Genes Cells ; 18(5): 369-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23432726

RESUMO

Receptor-associated late transducer (RALT) acts as a negative feedback inhibitor of ErbB receptor signaling via physical interaction with ErbB. Although RALT contains a 14-3-3 binding motif (247-RSHSGP-252), little is known about the molecular basis and significance of binding to 14-3-3. Here, we report that 14-3-3 interacts with RALT in H9c2 and COS-7 cells in a Ser-250 phosphorylation-dependent manner. An in vitro kinase assay showed that RALT is a substrate for checkpoint kinase 1 (Chk1). Interaction between ectopically expressed RALT and endogenous 14-3-3 was partially suppressed by pretreatment with the Chk1 inhibitor, UCN-01. In addition, expression of constitutively active Chk1 (Chk11-365 ) resulted in increased phosphorylation of the RALT 14-3-3 binding motif and enhanced the interaction between RALT and 14-3-3θ. Furthermore, fluorescence microscopy revealed that rapid trafficking of RALT to endosome-like vesicle structures was decelerated by coexpression of Chk11-365 , whereas this coexpression had no significant impact on trafficking of the RALT S250A mutant. Finally, a cycloheximide chase assay indicated that coexpression of Chk11-365 decelerated the degradation of ectopically expressed RALT, but not that of the S250A mutant. Collectively, these results suggest that Chk1 plays a role in regulating RALT protein stability by facilitating the interaction between 14-3-3 and RALT.


Assuntos
Proteínas 14-3-3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfosserina/metabolismo , Proteínas Quinases/metabolismo , Motivos de Aminoácidos , Animais , Células COS , Quinase 1 do Ponto de Checagem , Chlorocebus aethiops , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Mutação/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Especificidade por Substrato/efeitos dos fármacos
7.
Bio Protoc ; 14(14): e5038, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39100597

RESUMO

Advanced glycation end products (AGEs) are formed through the reaction/modification of proteins by saccharides (e.g., glucose and fructose) and their intermediate/non-enzymatic products [e.g., methylglyoxal and glyceraldehyde (GA)]. In 2017, Dr. Takanobu Takata et al. developed the novel slot blot method to quantify intracellular GA-derived AGEs (GA-AGEs). Although the original method required nitrocellulose membranes, we hypothesized that the modified proteins contained in the AGEs may be effectively probed on polyvinylidene difluoride (PVDF) membranes. Because commercial lysis buffers are unsuitable for this purpose, Dr. Takata developed the slot blot method using an in-house-prepared lysis buffer containing 2-amino-2-hydromethyl-1,3-propanediol (Tris), urea, thiourea, and 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) that effectively probes AGEs onto PVDF membranes. The slot blot method also entails the calculation of Tris, urea, thiourea, and CHAPS concentrations, as well as protein and mass to be probed onto the PVDF membranes. GA-AGE-modified bovine serum albumin (BSA, GA-AGEs-BSA) is used to draw a standard curve and perform neutralization against a non-specific combination of anti-GA-AGEs antibodies, thereby enabling the quantification of GA-AGEs in cell lysates. This paper presents the detailed protocol for slot blot analysis of intracellular GA-AGE levels in C2C12 cells. Key features • This protocol leverages the idea that advanced glycation end products are modified proteins. • The lysis buffer containing Tris, urea, thiourea, and CHAPS enables probing proteins onto PVDF membranes. • Intracellular GA-AGE levels may be quantified for some cell types using polyclonal anti-GA-AGE antibodies and standard GA-AGE-modified BSA. • The lysis buffer may be simultaneously prepared with the cell lysate. • There is no limit to the type of cultured cells used in the preparation of cell lysate.

8.
J Urol ; 189(5): 1921-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23147251

RESUMO

PURPOSE: Molecular targeted drugs, such as mTORC1 inhibitors, have been clinically popularized for advanced renal cell carcinoma treatment but metastasis is still a serious concern. mTORC2 has several important functions, including HIF-2α activation in malignant cells. HIF-2α suppresses E-cadherin expression, which is associated with tumor invasion and metastasis. We investigated whether mTORC2 regulates E-cadherin expression and controls cell motility during HIF-2α down-regulation in renal cell carcinoma cells. MATERIALS AND METHODS: We used PP242, a dual inhibitor of mTORC1/mTORC2 and the mTORC1 specific inhibitor rapamycin. E-cadherin expression in 786-O cells was examined using real-time polymerase chain reaction, Western blot and immunocytochemical staining. Cell motility was analyzed by time-lapse microscopy and wound healing assay. RESULTS: High E-cadherin expression was found in RCC4/VHL cells but low levels were found in VHL defective RCC4 and 786-O cells. HIF-2α expression was suppressed only in RCC4/VHL cells. In 786-O cells HIF-2α inhibition induced by the dual mTORC1/C2 inhibitor PP242 (0.05 to 0.5 µmol/L) resulted in a dose dependent increase in E-cadherin expression and the restored E-cadherin was localized at cell-to-cell junctions. Treatment with the mTORC1 inhibitor rapamycin resulted in no significant change. The migration of PP242 treated cells was significantly suppressed compared with those treated with rapamycin. CONCLUSIONS: Results show that mTORC2 might regulate E-cadherin expression and suppress cell motility by controlling the mTORC2-HIF-2α signaling pathway. The dual inhibitor of mTORC1/C2 as a cadherin regulatory agent may be a novel therapeutic strategy with tumoricidal agents for advanced renal cell carcinoma.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Caderinas/biossíntese , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Movimento Celular , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Complexos Multiproteicos/antagonistas & inibidores , Proteínas/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Regulação para Cima , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Células Tumorais Cultivadas
9.
Metabolites ; 13(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37110222

RESUMO

Various types of advanced glycation end-products (AGEs) have been identified and studied. I have reported a novel slot blot analysis to quantify two types of AGEs, glyceraldehyde-derived AGEs, also called toxic AGEs (TAGE), and 1,5-anhydro-D-fructose AGEs. The traditional slot blot method has been used for the detection and quantification of RNA, DNA, and proteins since around 1980 and is one of the more commonly used analog technologies to date. However, the novel slot blot analysis has been used to quantify AGEs from 2017 to 2022. Its characteristics include (i) use of a lysis buffer containing tris-(hydroxymethyl)-aminomethane, urea, thiourea, and 3-[3-(cholamidopropyl)-dimetyl-ammonio]-1-propane sulfonate (a lysis buffer with a composition similar to that used in two-dimensional gel electrophoresis-based proteomics analysis); (ii) probing of AGE-modified bovine serum albumin (e.g., standard AGE aliquots); and (iii) use of polyvinylidene difluoride membranes. In this review, the previously used quantification methods of slot blot, western blot, immunostaining, enzyme-linked immunosorbent assay, gas chromatography-mass spectrometry (MS), matrix-associated laser desorption/ionization-MS, and liquid chromatography-electrospray ionization-MS are described. Lastly, the advantages and disadvantages of the novel slot blot compared to the above methods are discussed.

10.
Metabolites ; 13(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512585

RESUMO

Kampo medicines are Japanese traditional medicines developed from Chinese traditional medicines. The action mechanisms of the numerous known compounds have been studied for approximately 100 years; however, many remain unclear. While components are normally affected through digestion, absorption, and metabolism, in vitro oral, esophageal, and gastric epithelial cell models avoid these influences and, thus, represent superior assay systems for Kampo medicines. We focused on two areas of the strong performance of this assay system: intracellular and extracellular advanced glycation end-products (AGEs). AGEs are generated from glucose, fructose, and their metabolites, and promote lifestyle-related diseases such as diabetes and cancer. While current technology cannot analyze whole intracellular AGEs in cells in some organs, some AGEs can be generated for 1-2 days, and the turnover time of oral and gastric epithelial cells is 7-14 days. Therefore, we hypothesized that we could detect these rapidly generated intracellular AGEs in such cells. Extracellular AEGs (e.g., dietary or in the saliva) bind to the receptor for AGEs (RAGE) and the toll-like receptor 4 (TLR4) on the surface of the epithelial cells and can induce cytotoxicity such as inflammation. The analysis of Kampo medicine effects against intra/extracellular AGEs in vitro is a novel model.

11.
Membranes (Basel) ; 13(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132900

RESUMO

Kampo is a Japanese traditional medicine modified from traditional Chinese medicine. Kampo medicines contain various traditional crude drugs with unknown compositions due to the presence of low-molecular-weight compounds and proteins. However, the proteins are generally rare and extracted with high-polarity solvents such as water, making their identification and quantification difficult. To develop methods for identifying and quantifying the proteins in Kampo medicines, in the current study we employ previous technology (e.g., column chromatography, electrophoresis, and membrane chromatography), focusing on membrane chromatography with a polyvinylidene difluoride (PVDF) membrane. Moreover, we consider slot blot analysis based on the principle of membrane chromatography, which is beneficial for analyzing the proteins in Kampo medicines as the volume of the samples is not limited. In this article, we assess a novel slot blot method developed in 2017 and using a PVDF membrane and special lysis buffer to quantify advanced glycation end products-modified proteins against other slot blots. We consider our slot blot analysis superior for identifying and quantifying proteins in Kampo medicines compared with other methods as the data obtained with our novel slot blot can be shown with both error bars and the statistically significant difference, and our operation step is simpler than those of other methods.

12.
Metabolites ; 14(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276293

RESUMO

Lifestyle-related diseases (LSRDs), such as diabetes mellitus, cardiovascular disease, and nonalcoholic steatohepatitis, are a global crisis. Advanced glycation end-products (AGEs) have been extensively researched because they trigger or promote LSRDs. Recently, techniques such as fluorimetry, immunostaining, Western blotting, slot blotting, enzyme-linked immunosorbent assay, gas chromatography-mass spectrometry, matrix-assisted laser desorption-mass spectrometry (MALDI-MS), and electrospray ionization-mass spectrometry (ESI-MS) have helped prove the existence of intra/extracellular AGEs and revealed novel AGE structures and their modifications against peptide sequences. Therefore, we propose modifications to the existing categorization of AGEs, which was based on the original compounds identified by researchers in the 20th century. In this investigation, we introduce the (i) crude, (ii) diverse, and (iii) multiple AGE patterns. The crude AGE pattern is based on the fact that one type of saccharide or its metabolites or derivatives can generate various AGEs. Diverse and multiple AGE patterns were introduced based on the possibility of combining various AGE structures and proteins and were proven through mass analysis technologies such as MALDI-MS and ESI-MS. Kampo medicines are typically used to treat LSRDs. Because various compounds are contained in Kampo medicines and metabolized to exert effects on various organs or tissues, they may be suitable against various AGEs.

13.
Nutrients ; 14(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35267965

RESUMO

In diabetic patients, the metabolism of excess glucose increases the toxicity of the aldehyde group of sugar. Aldehydes, including glyceraldehyde (GA), react with intracellular proteins to form advanced glycation end-products (AGEs), which deteriorate bone quality and cause osteoporosis. One of the causes of osteoporotic fractures is impaired osteoblast osteogenesis; however, the cytotoxic effects of aldehydes and the subsequent formation of AGEs in osteoblasts have not yet been examined in detail. Therefore, the present study investigated the cytotoxicity of intracellular GA and GA-derived AGEs, named toxic AGEs (TAGE), in the mouse osteoblastic cell line MC3T3-E1. Treatment with GA induced MC3T3-E1 cell death, which was accompanied by TAGE modifications in several intracellular proteins. Furthermore, the downregulated expression of Runx2, a transcription factor essential for osteoblast differentiation, and collagen correlated with the accumulation of TAGE. The GA treatment also reduced the normal protein levels of collagen in cells, suggesting that collagen may be modified by TAGE and form an abnormal structure. Collectively, the present results show for the first time that GA and TAGE exert cytotoxic effects in osteoblasts, inhibit osteoblastic differentiation, and decrease the amount of normal collagen. The suppression of GA production and associated accumulation of TAGE has potential as a novel therapeutic target for osteoporosis under hyperglycemic conditions.


Assuntos
Antineoplásicos , Aldeídos , Animais , Morte Celular , Diferenciação Celular , Humanos , Camundongos , Osteoblastos
14.
Metabolites ; 12(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35888739

RESUMO

Cardiovascular disease (CVD) is a lifestyle-related disease (LSRD) induced by the dysfunction and cell death of cardiomyocytes. Cardiac fibroblasts are activated and differentiate in response to specific signals, such as transforming growth factor-ß released from injured cardiomyocytes, and are crucial for the protection of cardiomyocytes, cardiac tissue repair, and remodeling. In contrast, cardiac fibroblasts have been shown to induce injury or death of cardiomyocytes and are implicated in the pathogenesis of diseases such as cardiac hypertrophy. We designated glyceraldehyde-derived advanced glycation end-products (AGEs) as toxic AGEs (TAGE) due to their cytotoxicity and association with LSRD. Intracellular TAGE in cardiomyocytes decreased their beating rate and induced cell death in the absence of myocardial ischemia. The TAGE levels in blood were elevated in patients with CVD and were associated with myocardial ischemia along with increased risk of atherosclerosis in vascular endothelial cells in vitro. The relationships between the dysfunction or cell death of cardiac fibroblasts and intracellular and extracellular TAGE, which are secreted from certain organs, remain unclear. We examined the cytotoxicity of intracellular TAGE by a slot blot analysis, and TAGE-modified bovine serum albumin (TAGE-BSA), a model of extracellular TAGE, in normal human cardiac fibroblasts (HCF). Intracellular TAGE induced cell death in normal HCF, whereas TAGE-BSA did not, even at aberrantly high non-physiological levels. Therefore, only intracellular TAGE induced cell death in HCF under physiological conditions, possibly inhibiting the role of HCF.

15.
Nutrients ; 14(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35057513

RESUMO

BACKGROUND: The death of pancreatic islet ß-cells (ß-cells), which are the insulin-producing cells, promote the pathology in both Type 1 and Type 2 diabetes mellitus (DM) (T1DM and T2DM), and they are protected by autophagy which is one of the mechanisms of cell survival. Recently, that some advanced glycation end-products (AGEs), such as methylglyoxial-derived AGEs and Nε-carboxymethyllysine, induced the death of ß-cells were revealed. In contrast, we had reported AGEs derived from glyceraldehyde (GA, the metabolism intermediate of glucose and fructose) are considered to be toxic AGEs (TAGE) due to their cytotoxicity and role in the pathogenesis of T2DM. More, serum levels of TAGE are elevated in patients with T1 and T2DM, where they exert cytotoxicity. AIM: We researched the cytotoxicity of intracellular and extracellular TAGE in ß-cells and the possibility that intracellular TAGE were associated with autophagy. METHODS: 1.4E7 cells (a human ß-cell line) were treated with GA, and analyzed viability, quantity of TAGE, microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, and p62. We also examined the viability of 1.4E7 cells treated with TAGE-modified bovine serum albumin, a model of TAGE in the blood. RESULTS: Intracellular TAGE induced death of 1.4E7 cells, decrease of LC3-I, LC3-II, and p62. Extracellular TAGE didn't show cytotoxicity in the physiological concentration. CONCLUSION: Intracellular TAGE induced death of ß-cells more strongly than extracellular TAGE, and may suppress autophagy via reduction of LC3-I, LC3-II, and p62 to inhibit the degradation of them.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Autofagia/genética , Linhagem Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Produtos Finais de Glicação Avançada/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Ligação a RNA/genética
16.
Cells ; 11(14)2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35883620

RESUMO

The habitual and excessive consumption of sugar (i.e., sucrose and high-fructose corn syrup, HFCS) is associated with the onset and progression of lifestyle-related diseases (LSRD). Advanced glycation end-products (AGEs) have recently been the focus of research on the factors contributing to LSRD. Approaches that inhibit the effects of AGEs may be used to prevent and/or treat LSRD; however, since the structures of AGEs vary depending on the type of reducing sugars or carbonyl compounds to which they respond, difficulties are associated with verifying that AGEs are an etiological factor. Cytotoxic AGEs derived from glyceraldehyde, a triose intermediate in the metabolism of glucose and fructose, have been implicated in LSRD and are called toxic AGEs (TAGE). A dietary imbalance (the habitual and excessive intake of sucrose, HFCS, or dietary AGEs) promotes the generation/accumulation of TAGE in vivo. Elevated circulating levels of TAGE have been detected in non-diabetics and diabetics, indicating a strong relationship between the generation/accumulation of TAGE in vivo and the onset and progression of LSRD. We herein outline current findings on "TAGE as a new target" for human health.


Assuntos
Diabetes Mellitus , Produtos Finais de Glicação Avançada , Dieta , Frutose/efeitos adversos , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Sacarose/efeitos adversos
17.
Mol Vis ; 17: 159-69, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21245963

RESUMO

PURPOSE: Epidemiological and experimental studies have revealed that exposure to ultraviolet B (UVB) light can induce cataractogenesis. The objective of this study was to determine gene expression changes in human lens epithelial cells in response to UVB exposure and identify factors that can be involved in UVB-induced cataractogenesis. METHODS: SV40 T-antigen-transformed human lens epithelial cells (SRA01/04) were irradiated at various UVB-energy levels (10-80 mJ/cm²) and checked for viability. An irradiation condition of 30 mJ/cm² was adopted for transcriptome analysis. Total RNAs isolated from UVB-exposed and unexposed cells at 12 h and 24 h after UVB exposure were examined for global gene expression changes using Affymetrix Human Gene 1.0 ST array. mRNA levels of specific genes were examined by RT-PCR and real-time PCR, and protein levels in the conditioned media were assayed by ELISA. To examine mRNA expression in human lens, primary cultured human lens epithelial (HLE) cells were prepared from surgically removed lens epithelium, and used for UVB-irradiation and expression analysis. Effects of certain gene products on SRA01/04 cell metabolism were examined using commercially available recombinant proteins. RESULTS: Expression of most the genes analyzed was essentially unchanged (between 0.5 and 2.0 fold) in UVB-irradiated cells compared to non-irradiated cells at both 12 and 24 h after UVB exposure. Sixty one and 44 genes were upregulated more than twofold by UVB exposure at 12 h and 24 h, respectively. Emphasis was placed on genes encoding extracellular proteins, especially growth factors and cytokines. A total of 18 secreted protein genes were upregulated more than twofold at either or both time points. Amphiregulin (AREG) and growth differentiation factor 15 (GDF15) were chosen because of their higher upregulation and novelty, and their upregulation was confirmed in SRA01/04 cells using RT-PCR and real-time PCR analysis. AREG and GDF15 protein levels in conditioned media significantly increased at all UVB-energy points at 24 h, while they were scarcely detectable at 12 h. AREG and GDF15 mRNA levels were also significantly upregulated in UVB-irradiated primary cultured HLE cells compared with the corresponding control culture. AREG significantly stimulated ³H-thymidine and ³H-leucine uptake in SRA01/04 cells as did a positive control epidermal growth factor (EGF). Recombinant GDF15 did not stimulate ³H-thymidine incorporation at any concentration tested, but significantly stimulated ³H-leucine uptake. RT-PCR analysis demonstrated that primary cultured HLE and SRA01/04 cells expressed not only epidermal growth factor receptor (EGFR) mRNA but also transforming growth factor ß receptors (TGFBR1 and TGFBR2) mRNAs. CONCLUSIONS: These results indicate that AREG and GDF15 produced in response to UVB exposure can affect the growth and protein synthesis of lens epithelial cells, suggesting that they have autocrine and paracrine roles related to pathological changes of lens tissue during long-term UVB exposure.


Assuntos
Catarata/metabolismo , Células Epiteliais/citologia , Glicoproteínas/biossíntese , Fator 15 de Diferenciação de Crescimento/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Cristalino/citologia , Raios Ultravioleta , Anfirregulina , Sobrevivência Celular , Células Cultivadas , Primers do DNA/genética , Família de Proteínas EGF , Ensaio de Imunoadsorção Enzimática/métodos , Células Epiteliais/efeitos da radiação , Regulação da Expressão Gênica , Glicoproteínas/genética , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Cristalino/efeitos da radiação , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
18.
Biomolecules ; 11(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33808036

RESUMO

The habitual intake of large amounts of sugar, which has been implicated in the onset/progression of lifestyle-related diseases (LSRD), induces the excessive production of glyceraldehyde (GA), an intermediate of sugar metabolism, in neuronal cells, hepatocytes, and cardiomyocytes. Reactions between GA and intracellular proteins produce toxic advanced glycation end-products (toxic AGEs, TAGE), the accumulation of which contributes to various diseases, such as Alzheimer's disease, non-alcoholic steatohepatitis, and cardiovascular disease. The cellular leakage of TAGE affects the surrounding cells via the receptor for AGEs (RAGE), thereby promoting the onset/progression of LSRD. We demonstrated that the intracellular accumulation of TAGE triggered numerous cellular disorders, and also that TAGE leaked into the extracellular space, thereby increasing extracellular TAGE levels in circulating fluids. Intracellular signaling and the production of reactive oxygen species are affected by extracellular TAGE and RAGE interactions, which, in turn, facilitate the intracellular generation of TAGE, all of which may contribute to the pathological changes observed in LSRD. In this review, we discuss the relationships between intracellular TAGE levels and numerous types of cell damage. The novel concept of the "TAGE theory" is expected to open new perspectives for research into LSRD.


Assuntos
Doença de Alzheimer/metabolismo , Doenças Cardiovasculares/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Hepatócitos/metabolismo , Humanos
19.
Clin Chim Acta ; 523: 45-57, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34453919

RESUMO

BACKGROUND AND AIMS: Immunoglobulin 4 (IgG4)-related disease (IgG4-RD) is a lymphoproliferative disorder characterized by elevated serum IgG4 levels and tissue infiltration of IgG4-positive plasma cells. We analyzed the serum proteins, whose levels varied based on the disease state and treatment. MATERIALS AND METHODS: Serum proteins from patients with IgG4-related disease and healthy subjects were resolved using two-dimensional electrophoresis, silver-stained, and scanned. Alternatively, the proteins were labeled with Cy2, Cy3, and Cy5 before electrophoresis. The proteins, whose expression differed significantly between patients and healthy individuals, and between before and after steroid treatment, were identified and validated using enzyme-linked immunosorbent assays. RESULTS: Pre-treatment sera from patients with IgG4-related disease was characterized by increased levels of immunoglobulins such as IgG1, IgG4; inflammatory factors such as α-1 antitrypsin (A1AT); and proteins associated with immune system regulation such as clusterin and leucine-rich α-2-glycoprotein (LRG-1). The serum levels of A1AT, LRG-1 and clusterin, during treatment with prednisolone for up to 12 months revealed that LRG-1 levels were halved after 1 month of treatment, comparable to those in healthy subjects; LRG-1 levels remained normal until the end of treatment. CONCLUSION: LRG-1 could serve as a novel biomarker of IgG4-related diseases.


Assuntos
Doença Relacionada a Imunoglobulina G4 , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G , Processamento de Proteína Pós-Traducional , Proteômica
20.
Diabetol Metab Syndr ; 12: 54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684984

RESUMO

BACKGROUND: Sarcopenia is a progressive condition that is characterized by decreases in skeletal muscle mass and function. Although sarcopenia is associated with lifestyle-related diseases (LSRD), the mechanisms underlying cell death in myoblasts, which differentiate to myotubes, remain unclear. We previously designated glyceraldehyde (an intermediate of glucose/fructose metabolism)-derived advanced glycation end-products (AGEs) as toxic AGEs (TAGE) because of their cytotoxicity and involvement in LSRD, and hypothesized that TAGE contribute to cell death in myoblasts. METHODS: C2C12 cells, which are murine myoblasts, were treated with 0, 0.5, 1, 1.5, and 2 mM glyceraldehyde for 24 h. Cell viability and intracellular TAGE were then assessed using 5-[2,4,-bis(sodioxysulfonyl)phenyl]-3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-tetrazole-3-ium (WST-8) and slot blot assays. Cells were pretreated with 8 mM aminoguanidine, an inhibitor of AGE production, for 2 h, followed by 0, 1.5, and 2 mM glyceraldehyde for 24 h. Cell viability and intracellular TAGE levels were then assessed. Serum TAGE levels in STAM mice, in which there were four stages (no steatosis, simple steatosis, steatohepatitis, and fibrosis), were measured using a competitive enzyme-linked immunosorbent assay. Results were expressed as TAGE units (U) per milliliter of serum, with 1 U corresponding to 1.0 µg of glyceraldehyde-derived AGE-bovine serum albumin (BSA) (TAGE-BSA). The viability of cells treated with 20, 50, and 100 µg/mL non-glycated BSA and TAGE-BSA for 24 h was assessed using the WST-8 assay. RESULTS: In C2C12 cells treated with 1.5 and 2 mM glyceraldehyde, cell viability decreased to 47.7% (p = 0.0021) and 5.0% (p = 0.0001) and intracellular TAGE levels increased to 6.0 and 15.9 µg/mg protein, respectively. Changes in cell viability and TAGE production were completely inhibited by 8 mM aminoguanidine. Serum TAGE levels at the steatohepatitis and fibrosis stages were 10.51 ± 1.16 and 10.44 ± 0.95 U/mL, respectively, and were higher than those at the no steatosis stage (7.27 ± 0.18 U/mL). Cell death was not induced by 20 or 50 µg/mL TAGE-BSA. The viabilities of C2C12 cells treated with 100 µg/mL non-glycated BSA and TAGE-BSA were 105.0% (p = 0.2890) and 85.3% (p = 0.0217), respectively. CONCLUSION: Intracellular TAGE strongly induced cell death in C2C12 cells and may also induce myoblast cell death in LSRD model mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA