Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nano Lett ; 20(3): 1491-1498, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046494

RESUMO

Driven by the emergence of colloidal semiconductor quantum dots (QDs) of tunable emission wavelengths, characteristic of exciton absorption peaks, outstanding photostability and solution processability in device fabrication have become a key tool in the development of nanomedicine and optoelectronics. Diamond cubic crystalline silicon (Si) QDs, with a diameter larger than 2 nm, terminated with hydrogen atoms are known to exhibit bulk-inherited spin and valley properties. Herein, we demonstrate a newly discovered size region of Si QDs, in which a fast radiative recombination on the order of hundreds of picoseconds is responsible for photoluminescence (PL). Despite retaining a crystallographic structure like the bulk, controlling their diameters in the 1.1-1.7 nm range realizes the strong PL with continuous spectral tunability in the 530-580 nm window, the narrow spectral line widths without emission tails, and the fast relaxation of photogenerated carriers. In contrast, QDs with diameters greater than 1.8 nm display the decay times on the microsecond order as well as the previous Si QDs. In addition to the five-orders-of-magnitude variation in the PL decay time, a systematic study on the temperature dependence of PL properties suggests that the energy structure of the smaller QDs does not retain an indirect band gap character. It is discussed that a 1.7 nm diameter is critical to undergo changes in energy structure from bulky to molecular configurations.

2.
Phys Chem Chem Phys ; 22(36): 20515-20523, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966413

RESUMO

We have investigated how nucleation and growth processes of ice are influenced by interfacial molecular interactions on some oxide surfaces, such as rutile TiO2(110), TiO2(100), MgO(100), and Al2O3(0001), based on the diffraction patterns of electrons transmitted through ice crystallites under the experimental configuration of reflection high energy electron diffraction (RHEED). The cubic ice Ic grows on the TiO2(110) surface with the epitaxial relationship of (110)Ic//(110)TiO2 and [001]Ic//[11[combining macron]0]TiO2. The epitaxial ice growth tends to be disturbed on the TiO2(110) surface under the presence of oxygen vacancies and adatoms. The result is not simply ascribable to small misfit values between TiO2 and ice Ic lattices (∼2%) because ice grains are formed randomly on TiO2(100). No template effects are identified during ice nucleation on the pristine MgO(100) and Al2O3(0001) surfaces either. The water molecules are chemisorbed weakly on these surfaces as a precursor to dissociation via the acid-base interaction. Such anchored water species act as an inhibitor of epitaxial ice growth because the orientation flexibility of physisorbed water during nucleation is hampered at the interface by the preferential formation of hydrogen bonds.

3.
Nanotechnology ; 27(38): 385605, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27528598

RESUMO

Ordered, two-dimensional, self-organized Au nanoparticles were fabricated using radiofrequency (RF) magnetron sputtering. The particles were uniformly spherical in shape and ultrafine in size (3-7 nm) and showed an ultrahigh density in the order of ∼10(12) inch(-2). A custom-developed sputtering apparatus that employs low sputtering power density and a minimized sputtering time (1 min) was used to markedly simplify the preparation conditions for Au nanoparticle fabrication. The spatial distribution of Au nanoparticles was rigorously controlled by placing a Ta interfacial layer between the Au nanoparticles and substrate as well as by post-annealing samples in an Ar atmosphere after the formation of Au nanoparticles. The interfacial layer and the post-annealing step caused approximately 40% of the Au nanoparticles on the substrate surface to orient in the (111) direction. This method was shown to produce ultrafine Au nanoparticles showing an ultrahigh surface density. The crystal orientation of the nanoparticles can be precisely controlled with respect to the substrate surface. Therefore, this technique promises to deliver tunable nanostructures for applications in the field of high-performance electronic devices.

4.
Microscopy (Oxf) ; 73(2): 145-153, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38252480

RESUMO

(Scanning) transmission electron microscopy (TEM) images of samples in gas and liquid media are acquired with an environmental cell (EC) via silicon nitride membranes. The ratio of sample signal against the background is a significant factor for resolution. Depth-sectioning scanning TEM (STEM) is a promising technique that enhances the signal for a sample embedded in a matrix. It can increase the resolution to the atomic level, thereby enabling EC-STEM applications in important areas. This review introduces depth-sectioning STEM and its applications to high-resolution EC-STEM imaging of samples in gases and in liquids.

5.
Ultramicroscopy ; 261: 113966, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615522

RESUMO

In this study, we report a strain visualization method using large-angle convergent-beam electron diffraction (LACBED).1 We compare the proposed method with the strain maps acquired via STEM-NBD, a combination of scanning transmission electron microscopy (STEM) and nanobeam electron diffraction (NBD). Although STEM-NBD can precisely measure the lattice parameters, it requires a large amount of data and personal computer (PC) resources to obtain a two-dimensional strain map. Deficiency lines in the transmitted disk of LACBED reflect the crystalline structure information and move, curve, or disappear in the deformed area. Properly setting the optical conditions makes it possible to acquire real-space images over a broad area in conjunction with deficiency lines on the transmitted disk. The proposed method acquires images by changing the relative position between the specimen and the deficiency line and can grasp the strain information with a small number of images. In addition, the proposed method does not require high-resolution images. It can reduce the required PC memory or storage consumption in comparison with that of STEM-NBD, which requires a high-resolution diffraction pattern (DP) from each point of the region of interest. Compared with the two-dimensional maps of LACBED and NBD, NBD could detect large distortions in the area where the deficiency line curved, moved, or disappeared. The curving or moving direction of the deficiency line is qualitatively consistent with the NBD results. If quantitative strain values are not essential, strain visualization using LACBED can be considered an effective technique. We believe that the strain information of a sample can be obtained effectively using both methods.

6.
Parasitol Int ; 99: 102831, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38048903

RESUMO

The biosynthesis of N-linked glycan precursors in the endoplasmic reticulum is important for many eukaryotes. In particular, the synthesis of Man5GlcNAc2-PP-dolichol (M5-DLO) at the cytoplasmic face of the endoplasmic reticulum is essential for maintaining cellular functions. In Trypanosoma brucei, the unicellular organism that causes African trypanosomiasis, homologs of the mannosyltransferases ALG2 and ALG11, which are involved in the biosynthesis of M5-DLO, are found, but the effects of their deletion on cells remain unknown. In this study, we generated conditional gene knockout strains of TbALG2 and TbALG11 in the bloodstream form T. brucei. Decreased N-linked glycosylation and cell death were observed in both strains under non-permissive conditions, with TbALG2 having a greater effect than TbALG11. Transcriptomic analysis of cells losing expression of TbALG11 showed decrease in mRNAs for enzymes involved in glucose metabolism and increase in mRNAs for procyclins and variant surface glycoproteins. These results indicate that the M5-DLO biosynthetic pathway is essential for the proliferation of the bloodstream form T. brucei. They also suggest that the failure of this pathway induces the transcriptomic change.


Assuntos
Trypanosoma brucei brucei , Animais , Trypanosoma brucei brucei/genética , RNA Mensageiro/metabolismo , Glicosilação , Retículo Endoplasmático/metabolismo , Morte Celular , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
Parasitol Int ; 101: 102874, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38417735

RESUMO

Trypanosoma brucei brucei is a parasitic protist that expresses cell surface proteins modified with complex-type N-linked glycan (NLG), like multicellular organisms. However, little is known about the role of complex-type NLG. In T. b. brucei, it has been shown that either one of the glycosyltransferases, TbGT11 or TbGT15, is sufficient to initiate the synthesis of complex-type NLG. To clarify the role of complex-type NLG, it is necessary to generate cells lacking both enzymes. Therefore, we deleted TbGT11 and TbGT15 from the genome of T. b. brucei for the phenotypic examination. The mutant strain grew in culture, with reduced maximum cell density; showed decreased susceptibility to normal human serum, which contains trypanolytic factors; and lacked uptake of the haptoglobin-hemoglobin complex. These data indicate that protein modification by complex-type NLG is not essential but is required for receptor function.


Assuntos
Polissacarídeos , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Soro
8.
Biomater Adv ; 156: 213707, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043335

RESUMO

Incomplete removal of early-stage gastrointestinal cancers by endoscopic treatments often leads to recurrence induced by residual cancer cells. To completely remove or kill cancer tissues and cells and prevent recurrence, chemotherapy, radiotherapy, and hyperthermia using biomaterials with drugs or nanomaterials are usually administered following endoscopic treatments. However, there are few biomaterials that can be applied using endoscopic devices to locally kill cancer tissues and cells. We previously reported that decyl group-modified Alaska pollock gelatin-based microparticles (denoted C10MPs) can adhere to gastrointestinal tissues under wet conditions through the formation of a colloidal gel driven by hydrophobic interactions. In this study, we combined C10MPs with superparamagnetic iron oxide nanoparticles (SPIONs) to develop a sprayable heat-generating nanomaterial (denoted SP/C10MP) for local hyperthermia of gastrointestinal cancers. The rheological property, tissue adhesion strength, burst strength, and underwater stability of SP/C10MP were improved through decyl group modification and SPION addition. Moreover, SP/C10MP that adhered to gastrointestinal tissues formed a colloidal gel, which locally generated heat in response to an alternating magnetic field. SP/C10MP successfully killed cancer tissues and cells in colon cancer-bearing mouse models in vitro and in vivo. Therefore, SP/C10MP has the potential to locally kill residual cancer tissues and cells after endoscopic treatments.


Assuntos
Neoplasias Gastrointestinais , Hipertermia Induzida , Nanopartículas de Magnetita , Adesivos Teciduais , Camundongos , Animais , Adesivos Teciduais/química , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Neoplasia Residual , Materiais Biocompatíveis , Neoplasias Gastrointestinais/terapia
9.
Biomaterials ; 307: 122511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401482

RESUMO

Combination of different therapies is an attractive approach for cancer therapy. However, it is a challenge to synchronize different therapies for maximization of therapeutic effects. In this work, a smart composite scaffold that could synchronize magnetic hyperthermia and chemotherapy was prepared by hybridization of magnetic Fe3O4 nanoparticles and doxorubicin (Dox)-loaded thermosensitive liposomes with biodegradable polymers. Irradiation of alternating magnetic field (AMF) could not only increase the scaffold temperature for magnetic hyperthermia but also trigger the release of Dox for chemotherapy. The two functions of magnetic hyperthermia and chemotherapy were synchronized by switching AMF on and off. The synergistic anticancer effects of the composite scaffold were confirmed by in vitro cell culture and in vivo animal experiments. The composite scaffold could efficiently eliminate breast cancer cells under AMF irradiation. Moreover, the scaffold could support proliferation and adipogenic differentiation of mesenchymal stem cells for adipose tissue reconstruction after anticancer treatment. In vivo regeneration experiments showed that the composite scaffolds could effectively maintain their structural integrity and facilitate the infiltration and proliferation of normal cells within the scaffolds. The composite scaffold possesses multi-functions and is attractive as a novel platform for efficient breast cancer therapy.


Assuntos
Doxorrubicina/análogos & derivados , Hipertermia Induzida , Neoplasias , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Hipertermia , Fenômenos Magnéticos , Polietilenoglicóis
10.
Langmuir ; 29(9): 3116-24, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23391307

RESUMO

Nanomultiple CaFe2O4/ZnFe2O4pn junctions are prepared by a pulsed laser deposition method to explore their photoelectrochemical properties as the photoelectrodes. It is demonstrated that the multiple-pn-junction structure is favorable to enhancing the photocurrent density and the onset potential of the photoelectrode. Furthermore, the 20-junction photoelectrode-based PEC cell yields a high open circuit photovoltage of up to 0.97 V, which is much higher than that for a single pn junction photoelectrode PEC cell that yields an open circuit photovoltage of 0.13 V. A multiple-junction band structure model is assumed to describe the behavior of the CaFe2O4/ZnFe2O4 multiple-junction photoelectrodes. It is suggested that the open circuit photovoltage is dominated by the number of pn junctions in a multiple-junction photoelectrode and the carrier transfer inside the photoelectrode is improved by narrowing the single-layer thickness. These findings provide a new approach to designing the multiple-junction structure to improve the PEC properties of the photoelectrodes.

11.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570487

RESUMO

The structural change in Pt networks composed of multiple chain connections among grains was observed in air at 1 atm using atomic-resolution environmental cell scanning transmission electron microscopy. An aberration-corrected incident electron probe with a wide convergence angle made it possible to increase the depth resolution that contributes to enhancing the signal-to-noise ratio of Pt network samples in air in an environmental cell, resulting in the achievement of atomic-resolution imaging. The exposure of the Pt networks to gas molecules under Brownian motion, stimulated by electron beams in the air, increases the collision probability between gas molecules and Pt networks, and the Pt networks are more intensely stressed from all directions than in a situation without electron irradiation. By increasing the electron beam dose rate, the structural change of the Pt networks became significant. Dynamic observation on an atomic scale suggested that the structural change of the networks was not attributed to the surface atomic-diffusion-induced step motion but mainly caused by the movement and deformation of unstable grains and grain boundaries. The oxidized surface layers may be one of the factors hindering the surface atomic step motion, mitigating the change in the size of the grains and grain boundaries.

12.
Mater Horiz ; 10(6): 2254-2261, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021482

RESUMO

Here we report on the growth of thin crystalline films of the metastable phase GeTe2. Direct observation by transmission electron microscopy revealed a Te-Ge-Te stacking with van der Waals gaps. Moreover, electrical and optical measurements revealed the films exhibted semiconducting properties commensurate with electronics applications. Feasibility studies in which device structures were fabricated demonstrated the potential application of GeTe2 as an electronic material.

13.
Adv Mater ; 35(3): e2207466, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271728

RESUMO

To realize a sustainable hydrogen economy, corrosion-resistant non-noble-metal catalysts are needed to replace noble-metal-based catalysts. The combination of passivation elements and catalytically active elements is crucial for simultaneously achieving high corrosion resistance and high catalytic activity. Herein, the self-selection/reconstruction characteristics of multi-element (nonary) alloys that can automatically redistribute suitable elements and rearrange surface structures under the target reaction conditions during the oxygen evolution reaction are investigated. The following synergetic effect (i.e., cocktail effect), among the elements Ti, Zr, Nb, and Mo, significantly contributes to passivation, whereas Cr, Co, Ni, Mn, and Fe enhance the catalytic activity. According to the practical water electrolysis experiments, the self-selected/reconstructed multi-element alloy demonstrates high performance under a similar condition with proton exchange membrane (PEM)-type water electrolysis without obvious degradation during stability tests. This verifies the resistance of the alloy to corrosion when used as an electrode under a practical PEM electrolysis condition.

14.
J Nanosci Nanotechnol ; 12(2): 1688-91, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22630030

RESUMO

The microstructural evolutions of nano-scale magnetic Co particles formed in Cu-Co base alloys have been investigated on isothermal annealing at 973 K, using transmission electron microscopy (TEM). After the solution treatment and short annealing, nano-scale magnetic particles appeared randomly in the Cu-rich matrix. With increasing the isothermal annealing time, however, pairs and sometimes more than two of Co precipitates were linearly arranged along <100> directions in Cu-Co alloys. On the other hand, such linear arrangements of precipitates were extended in Cu-Ni-Co alloys. Co precipitates were cubic in the coherent stage and octahedral in incoherent stage of precipitation in binary alloys, while the precipitates rendered rectangular shapes even in the incoherent stage in Cu-Ni-Co. The magnetic properties of the specimens have also been measured at the similar conditions, with the superconducting quantum interference device (SQUID) magnetometer. The present study revealed that coersive forces of the specimens were correlated with the microstructural evolution occurring during the isothermal annealing.

15.
J Nanosci Nanotechnol ; 12(2): 1337-40, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629951

RESUMO

The microstructural evolutions of precipitates formed in a Cu75-Fe5-Ni20 alloy on isothermal annealing at 873 K and 1073 K have been investigated by means of transmission electron microscopy (TEM). Nano-scale magnetic particles were formed randomly in the Cu-rich matrix after receiving a short annealing due to phase decomposition in the alloy. With increasing the isothermal annealing time, however, the striking features that two or more nano-scale particles with a cubic shape and a rod shape were aligned linearly along (100) directions were observed on isothermal annealing at 873 K and 1073 K, respectively. To investigate electro-magnetic properties of precipitates in a Cu-Fe-Ni alloy, the superconducting quantum interference device (SQUID) magnetometer and physical property measurement system (PPMS) were also complemented. The present study revealed significant influences that the magnetic properties of the specimens were closely related to the microstructures in the Cu-Fe-Ni alloy, which microstructures significantly depend on the isothermal annealing temperature.

16.
J Electron Microsc (Tokyo) ; 61(6): 409-13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952302

RESUMO

To study their thermal stability, we observed Pt colloidal nanoparticles on terraced graphene layers at high temperatures using aberration-corrected transmission electron microscopy. Not only Pt nanoparticles but also single Pt atoms were formed on the graphene layers by heating Pt colloids to 500-800°C. High resolution in situ observation showed that Pt nanoparticles and single atoms anchored to the edge of the graphene layers were relatively stationary under elevated temperatures, although some Pt atoms migrated on the graphene surfaces. The results indicated that the Pt single atoms at the edge of the graphene exhibited high-temperature stability.

17.
J Electron Microsc (Tokyo) ; 61(3): 159-69, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22460388

RESUMO

Optical sectioning using scanning confocal electron microscopy (SCEM) is a new three-dimensional (3D) imaging technique which promises improved depth resolution, particularly for laterally extended objects. Using a stage-scanning system to move the specimen in three dimensions, two-dimensional (2D) images sliced from any plane in XYZ space can be obtained in shorter acquisition times than those required for conventional electron tomography. In this paper, a double aberration-corrected SCEM used in annular dark-field mode was used to observe the 3D structure of SiO(2) hollow spheres fabricated by a carbon template method. The double-shell structure of the sample was clearly reflected in both XY- and XZ-sliced images. However, elongation along the optical axis was still evident in the XZ-sliced images even when double aberration correctors were used. Application of a deconvolution technique to the experimental XZ-sliced images reduced the elongated shell thicknesses of the SiO(2) sphere by 40-50% and the selectivity of information at a certain sample depth was also enhanced. Subsequently, 3D reconstruction by stacking the deconvoluted slice images restored the spherical surface of a SiO(2) sphere.

18.
Microsc Microanal ; 18(3): 603-11, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22494464

RESUMO

Scanning confocal electron microscopy (SCEM) is a new imaging technique that is capable of depth sectioning with nanometer-scale depth resolution. However, the depth resolution in the optical axis direction (Z) is worse than might be expected on the basis of the vertical electron probe size calculated with the existence of spherical aberration. To investigate the origin of the degradation, the effects of electron energy loss and chromatic aberration on the depth resolution of annular dark-field SCEM were studied through both experiments and computational simulations. The simulation results obtained by taking these two factors into consideration coincided well with those obtained by experiments, which proved that electron energy loss and chromatic aberration cause blurs at the overfocus sides of the Z-direction intensity profiles rather than degrade the depth resolution much. In addition, a deconvolution method using a simulated point spread function, which combined two Gaussian functions, was adopted to process the XZ-slice images obtained both from experiments and simulations. As a result, the blurs induced by energy loss and chromatic aberration were successfully removed, and there was also about 30% improvement in the depth resolution in deconvoluting the experimental XZ-slice image.

19.
Microscopy (Oxf) ; 71(3): 181-186, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35274727

RESUMO

Ultra-thin silicon nitride (SiN) membranes are critical in microfabrication-based liquid cells (LCs) for transmission electron microscopy (TEM). This study used a homemade LC with a 50-nm SiN membrane to study the dynamics of 2.58-nm platinum (Pt) nanoparticles (NPs) in approximately 200-nm-deep water. When a strong beam with electron flux ranging from 2.5 × 103 to 1.4 × 106 e-/(nm2 s) was applied to resolve the NPs, the beam caused NP aggregation and even drilled a hole on the top membrane. The hole drilling was prevented by coating a 1-4-nm-thick amorphous carbon layer on both sides of the membrane. The NP aggregation rate also decreased with increasing carbon thickness. After overcoming the aforementioned issues, lattice fringes of the Pt NPs were visible when the NPs were attached to the membrane of the 4-nm-carbon-coated LC containing a thin liquid layer. The effects of the electron beam and carbon on the LC and Pt NPs were investigated and discussed. This work provides a reference for LC-TEM research using strong electron beams.

20.
J Nanosci Nanotechnol ; 11(12): 10800-3, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22408999

RESUMO

The precipitation behavior of Cu-Fe alloys with Ni addition on isothermal annealing at 878 K was investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), and field-emission scanning electron microscopy (FE-SEM). Magnetic element atoms were segregated from the solid solution in supersaturated state, and nano-scale magnetic particles were randomly formed in the copper matrix at the initial stage of annealing at 873 K. With increasing the isothermal annealing time, however, the striking feature that two or more nano-scale magnetic particles with a cubic shape aligned linearly along (100) directions were observed upon the isothermal annealing at 873 K. To investigate the relationship between micro-structures and magnetic properties of the heterogeneous Cu-Fe-Ni alloys, magnetic measurements such as M-H measurements were also carried out, using a superconducting quantum interference device (SQUID) magnetometer. In this study, it was revealed that the magnetic properties of the specimen presented the ferromagnetic behavior, during the precipitation process in a Cu-Fe-Ni alloy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA