Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Microbiol Immunol ; 68(3): 90-99, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244193

RESUMO

Despite the effectiveness of combination antiretroviral therapy, human immunodeficiency virus (HIV) infection remains incurable. To seek new strategies to overcome HIV type 1 (HIV-1) latency, one of the major barriers to HIV elimination, it is crucial to better understand how this state is maintained. Here, by means of an RNA interference screen employing an HIV-1 latency model using monocytic cell lines, we identified solute carrier family 25 member 42 (SLC25A42) as a potential host factor not previously known to affect HIV-1 latency. SLC25A42 knockdown resulted in increased HIV-1 expression, whereas forced expression of exogenous SLC25A42 suppressed it in SLC25A42-depleted cells. SLC25A42 depletion increased HIV-1 proviral transcriptional elongation but did not cause HIV-1 activation in an HIV-1 Tat-depleted latency model. This suggests that the role of SLC25A42 in HIV-1 transcription depends on HIV-1 Tat. Chromatin immunoprecipitation-qPCR analysis further revealed that SLC25A42 accumulated on or near the HIV-1 5' long terminal repeat promoter region of the HIV-1 provirus, suggesting a possible role in regulating HIV-1 Tat near this promoter region. These results indicate that SLC25A42 plays a novel role in HIV-1 latency maintenance in monocytic HIV-1 reservoirs.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Provírus/genética , Latência Viral/genética , Células Jurkat , Regulação Viral da Expressão Gênica
2.
J Biol Chem ; 298(3): 101597, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063505

RESUMO

Flaviviruses are human pathogens that can cause severe diseases, such as dengue fever and Japanese encephalitis, which can lead to death. Valosin-containing protein (VCP)/p97, a cellular ATPase associated with diverse cellular activities (AAA-ATPase), is reported to have multiple roles in flavivirus replication. Nevertheless, the importance of each role still has not been addressed. In this study, the functions of 17 VCP mutants that are reportedly unable to interact with the VCP cofactors were validated using the short-interfering RNA rescue experiments. Our findings of this study suggested that VCP exerts its functions in replication of the Japanese encephalitis virus by interacting with the VCP cofactor nuclear protein localization 4 (NPL4). We show that the depletion of NPL4 impaired the early stage of viral genome replication. In addition, we demonstrate that the direct interaction between NPL4 and viral nonstructural protein (NS4B) is critical for the translocation of NS4B to the sites of viral replication. Finally, we found that Japanese encephalitis virus and dengue virus promoted stress granule formation only in VCP inhibitor-treated cells and the expression of NS4B or VCP attenuated stress granule formation mediated by protein kinase R, which is generally known to be activated by type I interferon and viral genome RNA. These results suggest that the NS4B-mediated recruitment of VCP to the virus replication site inhibits cellular stress responses and consequently facilitates viral protein synthesis in the flavivirus-infected cells.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Flavivirus , Proteínas Nucleares , Grânulos de Estresse , Proteína com Valosina , Proteínas não Estruturais Virais , Replicação Viral , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Flavivirus/genética , Flavivirus/metabolismo , Flavivirus/fisiologia , Genoma Viral , Humanos , Proteínas Nucleares/metabolismo , RNA Viral/genética , Grânulos de Estresse/genética , Grânulos de Estresse/metabolismo , Proteína com Valosina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia
3.
Biochem Biophys Res Commun ; 641: 139-147, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36527748

RESUMO

Combinational antiretroviral therapy (cART) dramatically suppresses the viral load to undetectable levels in human immunodeficiency virus (HIV)-infected patients. However, HIV-1 reservoirs in CD4+T cells and myeloid cells, which can evade cART and host antiviral immune systems, are still significant obstacles to HIV-1 eradication. The "Shock and Kill" approach using latently-reversing agents (LRAs) is therefore currently developing strategies for effective HIV-1 reactivation from latency and inducing cell death. Here, we performed small-molecular chemical library screening with monocytic HIV-1 latently-infected model cells, THP-1 Nluc #225, and identified 4-phenylquinoline-8-amine (PQA) as a novel LRA candidate. PQA induced efficient HIV-1 reactivation in combination with PKC agonists including Prostratin and showed a similar tendency for HIV-1 activation in primary HIV-1 reservoirs. Furthermore, PQA induced killing of HIV-1 latently-infected cells. RNA-sequencing analysis revealed PQA had different functional mechanisms from PKC agonists, and oxidative stress-inducible genes including DDIT3 or CTSD were only involved in PQA-mediated cell death. In summary, PQA is a potential LRA lead compound that exerts novel functions related to HIV-1 activation and apoptosis-mediated cell death to eliminate HIV-1 reservoirs.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Apoptose , Linfócitos T CD4-Positivos , Infecções por HIV/metabolismo , Ativação Viral , Latência Viral , Aminas/farmacologia
4.
J Med Virol ; 94(11): 5543-5546, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35790476

RESUMO

Patients infected with the Omicron variant of severe acute respiratory syndrome coronavirus 2 has increased worldwide since the beginning of 2022 and the variant has spread more rapidly than the Delta variant, which spread in the summer of 2021. It is important to clarify the cause of the strong transmissibility of the Omicron variant to control its spread. In 694 patients with coronavirus disease 2019, the copy numbers of virus in nasopharyngeal swab-soaked samples and the viral genotypes were examined using quantitative polymerase chain reaction (PCR) and PCR-based melting curve analysis, respectively. Whole-genome sequencing was also performed to verify the viral genotyping data. There was no significant difference (p = 0.052) in the copy numbers between the Delta variant cases (median 1.5 × 105 copies/µl, n = 174) and Omicron variant cases (median 1.2 × 105 copies/µl, n = 328). During this study, Omicron BA.1 cases (median 1.1 ×105 copies/µl, n = 275) began to be replaced by BA.2 cases (median 2.3 × 105 copies/µl, n = 53), and there was no significant difference between the two groups (p = 0.33). Our results suggest that increased infectivity of the Omicron variant and its derivative BA.2 is not caused by higher viral loads but by other factors, such as increased affinity to cell receptors or immune escape.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Carga Viral
5.
J Med Virol ; 94(4): 1707-1710, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34825717

RESUMO

The rapid spread of the Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a serious concern worldwide in summer 2021. We examined the copy number and variant types of all SARS-CoV-2-positive patients who visited our hospital from February to August 2021 using polymerase chain reaction (PCR) tests. Whole genome sequencing was performed for some samples. The R.1 variant (B.1.1.316) was responsible for most infections in March, replacing the previous variant (B.1.1.214); the Alpha (B.1.1.7) variant caused most infections in April and May; and the Delta variant (B.1.617.2) was the most prevalent in July and August. There was no significant difference in the copy numbers among the previous variant cases (n = 29, median 3.0 × 104 copies/µl), R.1 variant cases (n = 28, 2.1 × 105 copies/µl), Alpha variant cases (n = 125, 4.1 × 105 copies/µl), and Delta variant cases (n = 106, 2.4 × 105 copies/µl). Patients with Delta variant infection were significantly younger than those infected with R.1 and the previous variants, possibly because many elderly individuals in Tokyo were vaccinated between May and August. There was no significant difference in mortality among the four groups. Our results suggest that the increased infectivity of Delta variant may be caused by factors other than the higher viral loads. Clarifying these factors is important to control the spread of Delta variant infection.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/fisiologia , Carga Viral , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Reação em Cadeia da Polimerase , RNA Viral/genética , SARS-CoV-2/classificação , SARS-CoV-2/genética , Tóquio/epidemiologia , Sequenciamento Completo do Genoma
6.
J Theor Biol ; 545: 111152, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35545145

RESUMO

Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus.


Assuntos
Infecções por HIV , HIV-1 , Proteínas do Capsídeo/genética , DNA Complementar , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Zíper de Leucina , Proteínas Serina-Treonina Quinases , Desenvelopamento do Vírus
7.
Helicobacter ; 27(3): e12874, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35255160

RESUMO

BACKGROUND: Eradication treatment for Helicobacter pylori gastritis is covered by national health insurance since 2013 in Japan. However, eradication failure due to the increase of antimicrobial resistance has become a serious problem. The present study aims to establish a reference panel of Japanese H. pylori strains for antimicrobial susceptibility testing. METHOD: A total of 28 strains were collected from 4 medical facilities in Japan. Antimicrobial susceptibility tests (ASTs) to clarithromycin (CLR), amoxicillin (AMX), and metronidazole (MNZ), were used to select standard reference strains. Complete genome sequences were also determined. RESULTS: Three H. pylori strains (JSHR3, JSHR6 and JSHR31) were selected as standard reference strains by the Japanese Society for Helicobacter Research (JSHR). The minimum inhibitory concentrations (MICs) of the antibiotics against these 3 strains by agar dilution method with Brucella-based horse-serum-containing agar medium were as follows: JSHR3 (CLR 16 µg/ml, AMX 0.032 µg/ml and MNZ 4 µg/ml), JSHR6 (CLR 0.016 µg/ml, AMX 0.032 µg/ml and MNZ 4 µg/ml), and JSHR31 (CLR 16 µg/ml, AMX 1 µg/ml and MNZ 64 µg/ml). CONCLUSIONS: A reference panel of H. pylori JSHR strains was established. The panel consisted of JSHR6, which was antibiotic-susceptible, JSHR3, which was CLR-resistant, and JSHR31, which was multi-resistant. This reference panel will be essential for standardized ASTs before the optimal drugs are selected for eradication treatment.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Ágar/farmacologia , Ágar/uso terapêutico , Amoxicilina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Claritromicina/uso terapêutico , Farmacorresistência Bacteriana , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/genética , Humanos , Metronidazol/uso terapêutico , Testes de Sensibilidade Microbiana
8.
Biochem Biophys Res Commun ; 567: 106-111, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34146904

RESUMO

Latency remains a barrier to achieving a sterilizing cure to HIV infection. It is thus important to find new host factor(s) to better understand maintenance of HIV latency and be exploited to develop new and more efficient latency reversing agents (LRAs). Here we employed RNA interference screening with a latently HIV-1-infected cell-line to identify Stathmin 1 (STMN1) as a host factor required for maintaining HIV-1 latency. Depletion of STMN1 significantly enhanced HIV-1 expression in a STMN1 depletion-dependent manner and forced expression of exogenous STMN1 suppressed it. We further showed that STMN1 depletion increases HIV-1 proviral transcriptional elongation. Moreover, chromatin immunoprecipitation (ChIP)-qPCR assays revealed STMN1 accumulation on/near the HIV-1 5' LTR region compared to other regions on the HIV-1 provirus, suggesting the possible contribution of STMN1 to HIV-1 transcription. These results suggest that STMN1 is required for the maintenance of HIV-1 latency and implicates STMN1 as a novel therapeutic target to eradicate HIV-1.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , Estatmina/metabolismo , Latência Viral , Infecções por HIV/genética , Interações Hospedeiro-Patógeno , Humanos , Interferência de RNA , Estatmina/genética , Células THP-1
9.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666374

RESUMO

BST-2/CD317/tetherin is a host transmembrane protein that potently inhibits human immunodeficiency virus type 1 (HIV-1) virion release by tethering the nascent virions to the plasma membrane. Viral protein U (Vpu) is an accessory protein encoded by HIV-1 as well as by some simian immunodeficiency viruses (SIVs) infecting wild chimpanzees, gorillas, or monkeys (SIVcpz, SIVgor, or SIVgsn/SIVmon/SIVmus, respectively). HIV-1 Vpu directly binds to and downregulates human BST-2. The antagonism is highly species specific because the amino acid sequences of BST-2 are different among animal species. Here, we show that Vpu proteins from several SIVcpz, SIVgsn, SIVmon, or SIVmus isolates fail to antagonize human BST-2. Only Vpu from an SIVgsn isolate (SIVgsn-99CM71 [SIVgsn71]) was able to antagonize human BST-2 as well as BST-2 of its natural host, greater spot-nosed monkey (GSN). This SIVgsn Vpu interacted with human BST-2, downregulated cell surface human BST-2 expression, and facilitated HIV-1 virion release in the presence of human BST-2. While the unique 14AxxxxxxxW22 motif in the transmembrane domain of HIV-1NL4-3Vpu was reported to be important for antagonizing human BST-2, we show here that two AxxxxxxxW motifs (A22W30 and A25W33) exist in SIVgsn71 Vpu. Only the A22W30 motif was needed for SIVgsn71 Vpu to antagonize GSN BST-2, suggesting that the mechanism of this antagonism resembles that of HIV-1NL4-3 Vpu against human BST-2. Interestingly, SIVgsn71 Vpu requires two AxxxxxxxW (A22W30 and A25W33) motifs to antagonize human BST-2, suggesting an as-yet-undefined way that SIVgsn71 Vpu works against human BST-2. These results imply an evolutionary impact of primate BST-2 on lentiviral Vpu.IMPORTANCE Genetic alterations conferring a selective advantage in protecting from life-threating pathogens are maintained during evolution. In fact, the amino acid sequences of BST-2 differ among primate animals and their susceptibility to viral proteins is species specific, suggesting that such genetic diversity has arisen through the evolutionarily controlled balance between the host and pathogens. The M (main) group of HIV-1 is thought to be derived from SIVcpz, which utilizes Nef, but not Vpu, to antagonize chimpanzee BST-2. SIVcpz Nef is, however, unable to antagonize human BST-2, and Vpu was consequently chosen again as an antagonist against human BST-2 in the context of HIV-1. Studies on how Vpu lost and acquired this ability, together with the distinct mechanisms by which SIVgsn71 Vpu binds to and downregulates human or GSN BST-2, may help to explain the evolution of this lentiviral protein as a result of host-pathogen interactions.


Assuntos
Antígenos CD/biossíntese , Regulação para Baixo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Motivos de Aminoácidos , Animais , Antígenos CD/genética , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , Haplorrinos , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Vírus da Imunodeficiência Símia/genética , Especificidade da Espécie , Proteínas Virais Reguladoras e Acessórias/genética
10.
J Med Virol ; 93(12): 6833-6836, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34314050

RESUMO

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, such as B.1.1.7 and B.1.351, has become a crucial issue worldwide. Therefore, we began testing all patients with COVID-19 for the N501Y and E484K mutations by using polymerase chain reaction (PCR)-based methods. Nasopharyngeal swab samples from 108 patients who visited our hospital between February and April 2021 were analyzed. The samples were analyzed using reverse transcription-PCR with melting curve analysis to detect the N501Y and E484K mutations. A part of the samples was also subjected to whole-genome sequencing (WGS). Clinical parameters such as mortality and admission to the intensive care unit were analyzed to examine the association between increased disease severity and the E484K mutation. The ratio of cases showing the 501N + 484K mutation rapidly increased from 8% in February to 46% in March. WGS revealed that the viruses with 501N + 484K mutation are R.1 lineage variants. Evidence of increased disease severity related to the R.1 variants was not found. We found that the R.1 lineage variants rapidly prevailed in Tokyo in March 2021, which suggests the increased transmissibility of R.1 variants, while they showed no increased severity.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , Idoso , Feminino , Humanos , Masculino , Mutação/genética , Glicoproteína da Espícula de Coronavírus/genética , Tóquio/epidemiologia , Sequenciamento Completo do Genoma/métodos
11.
Platelets ; 32(8): 1120-1123, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34224289

RESUMO

Immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by antiplatelet antibodies and/or CD8 + T cells, resulting in the destruction of platelets and decreased platelet counts. Helicobacter pylori that persistently colonizes the stomach causes various disorders, including extragastric diseases such as chronic ITP (cITP). Several studies have reported increased platelet counts in H. pylori-infected cITP patients with eradication treatment and also the pathophysiological pathways involving cross-reaction of antibodies against H. pylori with platelets, the modulation of Fcrγ receptors balance and others. We previously reported an immunocomplex pathway comprising H. pylori low-molecular-weight (LMW) antigens, their antibodies, and platelets, involved in the development of H. pylori-associated cITP; however, the LMW antigens were not identified. In the present study, we demonstrated that the H. pylori LMW antigen of the immunocomplex was identified as Lpp20 of outer membrane proteins. Lpp20 could bind to platelets and specifically react with sera of H. pylori-associated cITP patients.


Assuntos
Plaquetas/imunologia , Helicobacter pylori/patogenicidade , Púrpura Trombocitopênica Idiopática/virologia , Doença Crônica , Humanos , Púrpura Trombocitopênica Idiopática/sangue
12.
Molecules ; 27(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35011353

RESUMO

Inhibition of fructose absorption may suppress adiposity and adiposity-related diseases caused by fructose ingestion. Eucalyptus leaf extract (ELE) inhibits intestinal fructose absorption (but not glucose absorption); however, its active compound has not yet been identified. Therefore, we evaluated the inhibitory activity of ELE obtained from Eucalyptus globulus using an intestinal fructose permeation assay with the human intestinal epithelial cell line Caco-2. The luminal sides of a cell monolayer model cultured on membrane filters were exposed to fructose with or without the ELE. Cellular fructose permeation was evaluated by measuring the fructose concentration in the medium on the basolateral side. ELE inhibited 65% of fructose absorption at a final concentration of 1 mg/mL. Oenothein B isolated from the ELE strongly inhibited fructose absorption; the inhibition rate was 63% at a final concentration of 5 µg/mL. Oenothein B did not affect glucose absorption. In contrast, the other major constituents (i.e., gallic acid and ellagic acid) showed little fructose-inhibitory activity. To our knowledge, this is the first report that oenothein B in ELE strongly inhibits fructose absorption in vitro. ELE containing oenothein B can prevent and ameliorate obesity and other diseases caused by dietary fructose consumption.


Assuntos
Eucalyptus/química , Frutose/metabolismo , Taninos Hidrolisáveis/química , Extratos Vegetais/química , Folhas de Planta/química , Células CACO-2 , Permeabilidade da Membrana Celular , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Taninos Hidrolisáveis/metabolismo , Absorção Intestinal/efeitos dos fármacos , Intestinos , Extratos Vegetais/metabolismo , Polifenóis/química , Povidona/análogos & derivados , Povidona/química
13.
Uirusu ; 71(1): 19-32, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-35526991

RESUMO

Coronavirus disease 2019(COVID-19)is a newly emerging human infectious disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).It had been first identified in Wuhan at the end of 2019 and the spread of SARS-CoV-2 variants has become a crucial issue worldwide. WHO categorized SARS-CoV-2 variants as "Variants of Concern; VOCs" and "Variants of Interest; VOIs" based on transmissibility, disease severity or their susceptibility to vaccines. Especially, the spread of SARS-CoV-2 variant categorized in VOCs, such as B.1.1.7 and B.1.617.2, has been a serious concern worldwide. In Japan, in addition to the B.1.1.214/B.1.1.284 variants, the B.1.1.7 variant has been rapidly spreading in Osaka and Tokyo. The B.1.617 variant was first identified in April 2021 in a patient who was under domestic quarantine and cases of community-acquired infections of the B.1.617.2 variant were first observed in May 2021. Amino acid changes in the spike protein, such as the N501Y, E484K or L452R mutations mainly observed in VOCs in addition to the D614G mutation are thought to affect the transmissibility and immune escape of the virus as well as the disease severity and this may be contributory to the rapid spread of SARS-CoV-2 variants. Now, several SARS-CoV-2 variants with additional mutations are continuously emerging worldwide and the prevailing SARS-CoV-2 variants are rapidly changing.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genômica , Humanos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
14.
Retrovirology ; 17(1): 20, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650782

RESUMO

BACKGROUND: HIV-1 promotes the formation of tunneling nanotubes (TNTs) that connect distant cells, aiding cell-to-cell viral transmission between macrophages. Our recent study suggests that the cellular protein M-Sec plays a role in these processes. However, the timing, mechanism, and to what extent M-Sec contributes to HIV-1 transmission is not fully understood, and the lack of a cell line model that mimics macrophages has hindered in-depth analysis. RESULTS: We found that HIV-1 increased the number, length and thickness of TNTs in a manner dependent on its pathogenic protein Nef and M-Sec in U87 cells, as observed in macrophages. In addition, we found that M-Sec was required not only for TNT formation but also motility of U87 cells, both of which are beneficial for viral transmission. In fact, M-Sec knockdown in U87 cells led to a significantly delayed viral production in both cellular and extracellular fractions. This inhibition was observed for wild-type virus, but not for a mutant virus lacking Nef, which is known to promote not only TNT formation but also migration of infected macrophages. CONCLUSIONS: By taking advantage of useful features of U87 cells, we provided evidence that M-Sec mediates a rapid and efficient cell-cell transmission of HIV-1 at an early phase of infection by enhancing both TNT formation and cell motility.


Assuntos
Citocinas/metabolismo , HIV-1/fisiologia , Junções Intercelulares/virologia , Linhagem Celular , Movimento Celular , Citocinas/genética , HIV-1/genética , HIV-1/crescimento & desenvolvimento , Humanos , Junções Intercelulares/metabolismo , Macrófagos/virologia , Mutação , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
15.
Biochem Biophys Res Commun ; 514(2): 538-544, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31060775

RESUMO

Successful HIV-1 infection and subsequent replication deeply depend on how the virus usurps the host cell machinery. Identification and functional characterization of these host factors may represent a critical strategy for developing novel anti-HIV-1 therapy. Here, expression cloning with a cDNA expression library identified as an inhibitor of HIV-1 infection, a carboxy-terminally truncated form of human POZ/BTB and AT-hook- containing Zinc finger protein 1 (PATZ1), a transcriptional regulatory factor implicated in development and cancer. Knockdown or knockout of endogenous PATZ1 revealed a supportive role of PATZ1 in HIV-1 infection, but not in transduction with murine leukemia virus-based retroviral vector. More specifically, knockdown or knockout of PATZ1 impaired the viral cDNA synthesis but not the entry process and expression of two PATZ1 isoforms in PATZ1-KO cells restored susceptibility to HIV-1 infection. These results indicate that PATZ1 plays an important role in HIV-1 infection.


Assuntos
HIV-1/genética , Interações Hospedeiro-Patógeno/genética , Fatores de Transcrição Kruppel-Like/genética , Linfócitos/virologia , RNA Viral/genética , Proteínas Repressoras/genética , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Biblioteca Gênica , Células HEK293 , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/metabolismo , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/metabolismo , Linfócitos/patologia , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/biossíntese , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Transdução de Sinais , Vesiculovirus/genética , Vesiculovirus/metabolismo
16.
PLoS Pathog ; 13(7): e1006441, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28683086

RESUMO

Regulation of capsid disassembly is crucial for efficient HIV-1 cDNA synthesis after entry, yet host factors involved in this process remain largely unknown. Here, we employ genetic screening of human T-cells to identify maternal embryonic leucine zipper kinase (MELK) as a host factor required for optimal uncoating of the HIV-1 core to promote viral cDNA synthesis. Depletion of MELK inhibited HIV-1 cDNA synthesis with a concomitant delay of capsid disassembly. MELK phosphorylated Ser-149 of the capsid in the multimerized HIV-1 core, and a mutant virus carrying a phosphorylation-mimetic amino-acid substitution of Ser-149 underwent premature capsid disassembly and earlier HIV-1 cDNA synthesis, and eventually failed to enter the nucleus. Moreover, a small-molecule MELK inhibitor reduced the efficiency of HIV-1 replication in peripheral blood mononuclear cells in a dose-dependent manner. These results reveal a previously unrecognized mechanism of HIV-1 capsid disassembly and implicate MELK as a potential target for anti-HIV therapy.


Assuntos
Capsídeo/metabolismo , DNA Viral/genética , Infecções por HIV/enzimologia , HIV-1/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Desenvelopamento do Vírus , Linhagem Celular , DNA Viral/metabolismo , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/virologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Replicação Viral
17.
Langmuir ; 35(5): 1798-1806, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30133291

RESUMO

Resistive pulse sensing (RPS) is an analytical technique for detecting particles with nano- to micrometer diameters, such as proteins, viruses, and bacteria. RPS is a promising tool for diagnosis as it can analyze the characteristics of target particles individually from ion current blockades as pulse waveforms. However, it is difficult to discriminate analog targets because RPS merely provides physical information such as size, shape, concentration, and charge density of the analyte. Influenza A virus, which is 80-120 nm in diameter, has various subtypes, demonstrating the diversity of virus characteristics. For example, highly pathogenic avian influenza infections in humans are recognized as an emerging infectious disease with high mortality rates compared with human influenza viruses. Distinguishing human from avian influenza using their differing biological characteristics would be challenging using RPS. To develop a highly selective diagnostic system for infectious diseases, we combined RPS with molecular recognition. Gold nanoparticles (GNPs) that have human influenza A (H1N1 subtype) virus-specific sialic acid receptors on the surface were prepared as a virus label for RPS analysis. A sulfobetaine and sialic acid (ligand) hybrid surface was formed on the GNPs for the suppression of nonspecific interaction. The results show a size change of viruses derived from specific interactions with GNPs. In contrast, no size shift was observed when nonspecific sialic acid receptor-immobilized GNPs were used. Detection of viruses by individual particle counting could be a new facet of diagnosis.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Nanopartículas Metálicas/química , Ácidos Siálicos/química , Animais , Galinhas/virologia , Cães , Técnicas Eletroquímicas/métodos , Ouro/química , Hemaglutininas/metabolismo , Vírus da Influenza A Subtipo H1N1/química , Ligantes , Células Madin Darby de Rim Canino/virologia , Técnicas Microbiológicas/métodos , Ácidos Siálicos/metabolismo , Proteínas Virais/metabolismo
18.
J Cell Biochem ; 119(2): 1475-1487, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28771803

RESUMO

A20, also referred to as tumor necrosis factor alpha (TNFα)-induced protein 3 (TNFAIP3), is an ubiquitin-editing enzyme whose expression is enhanced by NF-κB activation, and plays an important role in silencing NF-κB activity. Another well-known role for A20 is to protect cells from TNFα-induced apoptosis. Depletion of NF-κB in differentiating U937 monocytic leukemia cells is known to cause apoptotic cell death; however, much remains to be explored about the molecules that are expressed in an NF-κB-dependent manner and which support monocyte-macrophage differentiation. Using the monocytic cell line THP-1, and peripheral blood monocytes, we show here a sustained increase in A20 expression during monocyte-macrophage differentiation, which coincided with high NF-κB-dependent transcriptional activity. Depletion of NF-κB by stable expression of a super-repressor form of IκBα in THP-1 cells caused remarkable cell death during phorbol 12-myristate 13-acetate (PMA)-induced differentiation. A20 expression in these cells did not alter this NF-κB suppression, but was sufficient to protect the cells and restore the cell surface expression of a differentiation marker (CD11b) and phagocytic activity. Mutational analyses revealed that this A20 activity requires the carboxy-terminal zinc-finger domain, but not its deubiquitinase activity. Based on these findings, we conclude that A20, when ectopically expressed, can support both survival and differentiation of THP-1 cells in the absence of sustained NF-κB activity.


Assuntos
Núcleo Celular/metabolismo , NF-kappa B/genética , Ésteres de Forbol/farmacologia , Células THP-1/citologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Apoptose , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular , Humanos , Mutação , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Domínios Proteicos , Células THP-1/efeitos dos fármacos , Células THP-1/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/química , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
19.
Microbiology (Reading) ; 164(6): 877-882, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29738305

RESUMO

This study aimed to determine the characteristics of the Helicobacter pylori host NY43 strain and its prophage-cured derivative. H. pylori colonizing the human stomach cause many diseases. They show high genetic diversity, allowing the development of mutant strains that can form bacterial communities adapted to specific environmental conditions. Bacteriophage activities are associated with bacterial evolution, including pathogenicity development. Herein, we reported the complete genome sequence and genomic organization of two H. pylori prophages, KHP30 and KHP40; the effects of KHP30 on the behaviours of NY43 are not yet known. We showed that approximately 57 % prophage-cured derivatives spontaneously appeared in the exponential phase during liquid culture, and the biological characteristics of these derivatives differed from those of the host NY43. KHP30 reinfected the cured derivatives, and the curing ratio was influenced by culture conditions. KHP30 was shown to promote the development of a flexible H. pylori community with variable characteristics.


Assuntos
Helicobacter pylori/genética , Helicobacter pylori/virologia , Polimorfismo Genético , Prófagos/genética , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Expressão Gênica , Genoma Bacteriano/genética , Genoma Viral/genética , Genômica , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/patogenicidade , Locomoção , Lisogenia , Mutação , Prófagos/fisiologia , Análise de Sequência de DNA
20.
Clin Neuropathol ; 37(1): 36-41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29168690

RESUMO

Pilocytic astrocytoma (PA), featuring activation of the mitogen-activated protein kinase (MAPK) pathway, is the most common tumor of the pediatric central nervous system. However, it remains unknown whether MAPK activation is present in the reactive gliosis of non-neoplastic lesions. Therefore, we investigated the expression of MAPK in reactive gliosis associated with cavernous angiomas. Immunohistochemical expression and the extent of BRAF, ERK, p38, and JNK were investigated in 10 patients with gliosis surrounding cavernous angiomas (GS group) and 10 patients with PA (PA group). Evaluation of these parameters was scored as 0, none; 1, scarce; 2, moderate; 3, global. In the GS group, histopathologic features of PA (piloid cells, Rosenthal fibers, microcysts with eosinophilic granular bodies) were identified. Expression of ERK, and p38 was shown in all patients in the GS and PA group. Expression of BRAF was identified in 5 patients (50%) in the GS group and in 8 (80%) in the PA group. The mean score of BRAF expression in the PA group was significantly higher than that in the GS group (p = 0.019). Reactive gliosis may resemble PA in histological findings and MAPK activation. Therefore, PA could be indistinguishable from reactive gliosis with classic histopathologic and/or immunohistochemical methods.
.


Assuntos
Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Gliose/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Adulto , Idoso , Astrocitoma/diagnóstico , Neoplasias Encefálicas/diagnóstico , Feminino , Gliose/diagnóstico , Gliose/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA