Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Cells ; 28(10): 694-708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37632696

RESUMO

The guanine-rich stretch of single-stranded DNA (ssDNA) forms a G-quadruplex (G4) in a fraction of genic and intergenic chromosomal regions. The probability of G4 formation increases during events causing ssDNA generation, such as transcription and replication. In turn, G4 abrogates these events, leading to DNA damage. DHX36 unwinds G4-DNA in vitro and in human cells. However, its spatial correlation with G4-DNA in vivo and its role in genome maintenance remain unclear. Here, we demonstrate a connection between DHX36 and G4-DNA and its implications for genomic integrity. The nuclear localization of DHX36 overlapped with that of G4-DNA, RNA polymerase II, and a splicing-related factor. Depletion of DHX36 resulted in accumulated DNA damage, slower cell growth, and enhanced cell growth inhibition upon treatment with a G4-stabilizing compound; DHX36 expression reversed these defects. In contrast, the reversal upon expression of DHX36 mutants that could not bind G4 was imperfect. Thus, DHX36 may suppress DNA damage by promoting the clearance of G4-DNA for cell growth and survival. Our findings deepen the understanding of G4 resolution in the maintenance of genomic integrity.

2.
Nucleic Acids Res ; 49(18): 10465-10476, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520548

RESUMO

Telomere binding protein Stn1 forms the CST (Cdc13/CTC1-STN1-TEN1) complex in budding yeast and mammals. Likewise, fission yeast Stn1 and Ten1 form a complex indispensable for telomere protection. We have previously reported that stn1-1, a high-temperature sensitive mutant, rapidly loses telomere DNA at the restrictive temperature due to frequent failure of replication fork progression at telomeres and subtelomeres, both containing repetitive sequences. It is unclear, however, whether Stn1 is required for maintaining other repetitive DNAs such as ribosomal DNA. In this study, we have demonstrated that stn1-1 cells, even when grown at the permissive temperature, exhibited dynamic rearrangements in the telomere-proximal regions of subtelomere and ribosomal DNA repeats. Furthermore, Rad52 and γH2A accumulation was observed at ribosomal DNA repeats in the stn1-1 mutant. The phenotypes exhibited by the stn1-1 allele were largely suppressed in the absence of Reb1, a replication fork barrier-forming protein, suggesting that Stn1 is involved in the maintenance of the arrested replication forks. Collectively, we propose that Stn1 maintains the stability of repetitive DNAs at subtelomeres and rDNA regions.


Assuntos
DNA Fúngico/química , DNA Ribossômico/química , Sequências Repetitivas de Ácido Nucleico , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Proteínas de Ligação a Telômeros/fisiologia , Proteínas de Ligação a DNA/genética , Viabilidade Microbiana , Mutação , Recombinação Genética , Reparo de DNA por Recombinação , Proteínas de Schizosaccharomyces pombe/genética , Telômero , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
3.
Nucleic Acids Res ; 45(3): 1255-1269, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180297

RESUMO

The CST complex is a phylogenetically conserved protein complex consisting of CTC1/Cdc13, Stn1 and Ten1 that protects telomeres on linear chromosomes. Deletion of the fission yeast homologs stn1 and ten1 results in complete telomere loss; however, the precise function of Stn1 is still largely unknown. Here, we have isolated a high-temperature sensitive stn1 allele (termed stn1-1). stn1-1 cells abruptly lost telomeric sequence almost completely at the restrictive temperature. The loss of chromosomal DNA happened without gradual telomere shortening, and extended to 30 kb from the ends of chromosomes. We found transient and modest single-stranded G-strand exposure, but did not find any evidence of checkpoint activation in stn1-1 at the restrictive temperature. When we probed neutral-neutral 2D gels for subtelomere regions, we found no Y-arc-shaped replication intermediates in cycling cells. We conclude that the loss of telomere and subtelomere DNAs in stn1-1 cells at the restrictive temperature is caused by very frequent replication fork collapses specifically in subtelomere regions. Furthermore, we identified two independent suppressor mutants of the high-temperature sensitivity of stn1-1: a multi-copy form of pmt3 and a deletion of rif1. Collectively, we propose that fission yeast Stn1 primarily safeguards the semi-conservative DNA replication at telomeres and subtelomeres.


Assuntos
Replicação do DNA/genética , Replicação do DNA/fisiologia , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Dano ao DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Genes Fúngicos , Mutagênese , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Telômero/genética , Telômero/metabolismo , Encurtamento do Telômero , Temperatura
4.
Cancer Sci ; 109(11): 3532-3542, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30207029

RESUMO

The PHLDA family (pleckstrin homology-like domain family) of genes consists of 3 members: PHLDA1, 2, and 3. Both PHLDA3 and PHLDA2 are phosphatidylinositol (PIP) binding proteins and function as repressors of Akt. They have tumor suppressive functions, mainly through Akt inhibition. Several reports suggest that PHLDA1 also has a tumor suppressive function; however, the precise molecular functions of PHLDA1 remain to be elucidated. Through a comprehensive screen for p53 target genes, we identified PHLDA1 as a novel p53 target, and we show that PHLDA1 has the ability to repress Akt in a manner similar to that of PHLDA3 and PHLDA2. PHLDA1 has a so-called split PH domain in which the PH domain is divided into an N-terminal (ß sheets 1-3) and a C-terminal (ß sheets 4-7 and an α-helix) portions. We show that the PH domain of PHLDA1 is responsible for its localization to the plasma membrane and binding to phosphatidylinositol. We also show that the function of the PH domain is essential for Akt repression. In addition, PHLDA1 expression analysis suggests that PHLDA1 has a tumor suppressive function in breast and ovarian cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias Ovarianas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Processamento Alternativo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Transplante de Neoplasias , Fosfatidilinositóis/metabolismo , Ligação Proteica , Fatores de Transcrição/química
5.
Cancer Sci ; 108(6): 1101-1108, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28295876

RESUMO

Pancreatic neuroendocrine tumors (PanNET) are rare cancers that generally have a poor prognosis. Accurate diagnosis and proper treatment of these tumors requires a better understanding of the molecular mechanisms underlying the development of PanNET. It has been shown that the mTOR inhibitor everolimus can improve the progression-free survival of PanNET patients, suggesting that inhibition of the PI3K-Akt-mTOR pathway may suppress the progression of PanNET. PHLDA3 is a novel tumor suppressor protein that inhibits Akt activation by competition for binding to PIP3 . Our analysis of PanNET revealed frequent loss-of-heterozygosity and DNA methylation at the PHLDA3 locus, resulting in strong suppression of PHLDA3 transcription. Such alterations in the PHLDA3 gene were also frequently found in lung neuroendocrine tumors (NET), suggesting the possibility that various types of NET have in common the functional loss of the PHLDA3 gene.


Assuntos
Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA