Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 39(21): 4009-4022, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30782976

RESUMO

The relationship between neuronal impulse activity and neurotransmitter release remains elusive. This issue is especially poorly understood in the neuroendocrine system, with its particular demands on periodically voluminous release of neurohormones at the interface of axon terminals and vasculature. A shortage of techniques with sufficient temporal resolution has hindered real-time monitoring of the secretion of the peptides that dominate among the neurohormones. The lactotropic axis provides an important exception in neurochemical identity, however, as pituitary prolactin secretion is primarily under monoaminergic control, via tuberoinfundibular dopamine (TIDA) neurons projecting to the median eminence (ME). Here, we combined electrical or optogenetic stimulation and fast-scan cyclic voltammetry to address dopamine release dynamics in the male mouse TIDA system. Imposing different discharge frequencies during brief (3 s) stimulation of TIDA terminals in the ME revealed that dopamine output is maximal at 10 Hz, which was found to parallel the TIDA neuron action potential frequency distribution during phasic discharge. Over more sustained stimulation periods (150 s), maximal output occurred at 5 Hz, similar to the average action potential firing frequency of tonically active TIDA neurons. Application of the dopamine transporter blocker, methylphenidate, significantly increased dopamine levels in the ME, supporting a functional role of the transporter at the neurons' terminals. Lastly, TIDA neuron stimulation at the cell body yielded perisomatic release of dopamine, which may contribute to an ultrafast negative feedback mechanism to constrain TIDA electrical activity. Together, these data shed light on how spiking patterns in the neuroendocrine system translate to vesicular release toward the pituitary and identify how dopamine dynamics are controlled in the TIDA system at different cellular compartments.SIGNIFICANCE STATEMENT A central question in neuroscience is the complex relationship between neuronal discharge activity and transmitter release. By combining optogenetic stimulation and voltammetry, we address this issue in dopamine neurons of the neuroendocrine system, which faces particular spatiotemporal demands on exocytotic release; large amounts of neurohormone need to be secreted into the portal capillaries with precise timing to adapt to physiological requirements. Our data show that release is maximal around the neurons' default firing frequency. We further provide support for functional dopamine transport at the neurovascular terminals, shedding light on a long-standing controversy about the existence of neuroendocrine transmitter reuptake. Finally, we show that dopamine release occurs also at the somatodendritic level, providing a substrate for an ultrashort autoregulatory feedback loop.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
2.
Anal Chem ; 92(16): 11325-11331, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32692153

RESUMO

We have designed and fabricated a microwell array chip (MWAC) to trap and detect the entire content of individual vesicles after disruption of the vesicular membrane by an applied electrical potential. To understand the mechanism of vesicle impact electrochemical cytometry (VIEC) in microwells, we simulated the rupture of the vesicles and subsequent diffusion of entrapped analytes. Two possibilities were tested: (i) the vesicle opens toward the electrode, and (ii) the vesicle opens away from the electrode. These two possibilities were simulated in the different microwells with varied depth and width. Experimental VIEC measurements of the number of molecules for each vesicle in the MWAC were compared to VIEC on a gold microdisk electrode as a control, and the quantified catecholamines between these two techniques was the same. We observed a prespike foot in a significant number of events (∼20%) and argue this supports the hypothesis that the vesicles rupture toward the electrode surface with a more complex mechanism including the formation of a stable pore intermediate. This study not only confirms that in standard VIEC experiments the whole content of the vesicle is oxidized and quantified at the surface of the microdisk electrode but actively verifies that the adsorbed vesicle on the surface of the electrode forms a pore in the vicinity of the electrode rather than away from it. The fabricated MWAC promotes our ability to quantify the content of vesicles accurately, which is fundamentally important in bioanalysis of the vesicles.


Assuntos
Catecolaminas/análise , Técnicas Eletroquímicas/métodos , Lipossomos/análise , Técnicas Analíticas Microfluídicas/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ouro/química , Dispositivos Lab-On-A-Chip , Lipossomos/química , Técnicas Analíticas Microfluídicas/instrumentação
3.
Anal Chem ; 90(3): 1601-1607, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29286231

RESUMO

The study of the colligative properties of adenosine 5'-triphosphate (ATP) and catecholamines has received the attention of scientists for decades, as they could explain the capabilities of secretory vesicles (SVs) to accumulate neurotransmitters. In this Article, we have applied electrochemical methods to detect such interactions in vitro, at the acidic pH of SVs (pH 5.5) and examined the effect of compounds having structural similarities that correlate with functional groups of ATP (adenosine, phosphoric acid and sodium phosphate salts) and catecholamines (catechol). Chronoamperometry and fast scan cyclic voltammetry (FSCV) provide evidence compatible with an interaction of the catechol and adenine rings. This interaction is also reinforced by an electrostatic interaction between the phosphate group of ATP and the protonated ammonium group of catecholamines. Furthermore, chronoamperometry data suggest that the presence of ATP subtlety reduces the apparent diffusion coefficient of epinephrine in aqueous media that adds an additional factor leading to a slower rate of catecholamine exocytosis. This adds another plausible mechanism to regulate individual exocytosis events to alter communication.


Assuntos
Trifosfato de Adenosina/química , Catecolaminas/química , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Osmometria , Pressão Osmótica , Ácidos Fosfóricos/química
4.
ACS Chem Neurosci ; 10(4): 2060-2069, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30763068

RESUMO

Electrochemical measurements of exocytosis combined with intracellular vesicle impact electrochemical cytometry have been used to evaluate the effect of an anticancer drug, tamoxifen, on catecholamine release at the single-cell level. Tamoxifen has been used for over 40 years to treat estrogen receptor-positive breast cancers during both early stages of the disease and in the adjuvant setting. Tamoxifen causes memory and cognitive dysfunction, but the reasons for the cognitive impairment and memory problems induced by this anticancer drug are not well-known. We show that tamoxifen, through a nongenomic mechanism, can modulate both exocytosis and vesicle catecholamine storage in a model cell line. The results indicate that exocytosis is inhibited at high concentrations of tamoxifen and is stimulated at low levels. Tamoxifen also elicits a significant concentration-dependent change in total catecholamine content of single vesicles, while sub-nanomolar concentrations of the drug have stimulatory activity on the catecholamine content of vesicles. In addition, it has profound effects on storage at higher concentrations. Tamoxifen also reduces the intracellular free Ca2+ but only at micromolar concentration, by acting on voltage-gated Ca2+ channels, which likely affects neurotransmitter secretion.


Assuntos
Antineoplásicos/farmacologia , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Vesículas Secretórias/metabolismo , Tamoxifeno/farmacologia , Animais , Catecolaminas/análise , Células Cromafins/química , Células Cromafins/efeitos dos fármacos , Relação Dose-Resposta a Droga , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Células PC12 , Ratos , Vesículas Secretórias/química
5.
Anal Sci ; 24(8): 1039-44, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18689946

RESUMO

Electrocatalytic oxidation of ascorbic acid (AA) at a carbon paste electrode, chemically modified 2,2'-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone, was thoroughly investigated. The results of cyclic voltammetry, double potential-step chronoamperometry, linear sweep voltammetry and differential pulse voltammetry (DPV) studies were used for the prediction of the mechanism of electrochemical oxidation of AA mediated with 2,2'-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone at the surface of the modified electrode. The diffusion coefficient (D = 2.45 x 10(-5) cm(2) s(-1)) and the kinetic parameters such as the electron transfer coefficient (alpha = 0.34) were also determined. The results of DPV using the 2,2'-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone-modified electrode were applied in a highly sensitive determination of AA in drug samples. A linear range of 3.0 x 10(-6) - 1.2 x 10(-4) M and the detection limit (3sigma) 3.8 x 10(-7) M were obtained for DPV determination of AA in buffered pH 7.00 solutions (0.1 M phosphate buffer).


Assuntos
Ácido Ascórbico/análise , Técnicas Biossensoriais/métodos , Carbono/química , Hidroquinonas/química , Técnicas Biossensoriais/instrumentação , Soluções Tampão , Catálise , Difusão , Eletroquímica , Eletrodos , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Oxirredução , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Biosens Bioelectron ; 74: 30-6, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26094037

RESUMO

Bimetallic Ag@Pt core-shell nanoparticles supported on reduced graphene oxide nanosheets (Ag@Pt-GRs) was synthesized and used as novel desirable sensor platform and electrocatalyst for catechol as probe in aptasensor. Gold screen-printed electrodes modified with Ag@Pt-GRs and applied to advance enzyme-free and label-free electrochemical aptasensor for detection of protein biomarker tumor necrosis factor-alpha (TNF-α). The morphology of the Ag@Pt-GRs could be characterized by transmission electron microscopy, X-ray diffraction and UV-vis spectra. The results showed that these nanocomposite exhibited attractive electrocatalytic activity and also yielded large surface area, which improve the amount of immobilized TNF-α aptamer. Due to the excellent electrocatalytic activity of Ag@Pt-GRs towards the oxidation of catechol, determination of TNF-α antigen was based on its obstruction to the electrocatalytic oxidation of catechol by Ag@Pt-GRs after binding to the surface of electrode through interaction with the aptamer. The calibration curve was obtained by differential pulse voltammetry and square wave voltammetry. Under optimum conditions, the results demonstrated that this electrochemical aptasensor possessed a dynamic range from 0.0 pg/mL to 60 pg/mL with a low detection limit of 2.07 pg/mL for TNF-α. The analytical usefulness of the aptasensor was finally demonstrated analyzing serum samples. The simple fabrication method, high sensitivity, specificity, good reproducibility and stability as well as acceptable accuracy for TNF-α detection in human serum samples are the main advantages of this aptasensor, which might have broad applications in protein diagnostics and bioassay.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Grafite/química , Nanopartículas/química , Platina/química , Prata/química , Fator de Necrose Tumoral alfa/sangue , Catecóis/química , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Nanopartículas/ultraestrutura , Oxirredução , Óxidos/química , Fator de Necrose Tumoral alfa/análise
7.
Biosens Bioelectron ; 35(1): 75-81, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22410486

RESUMO

In the present paper, the use of a carbon paste electrode modified by meso-tetrakis(3-methylphenyl) cobalt porphyrin (CP) and TiO(2) nanoparticles for the determination of levodopa (LD) and carbidopa (CD) was described. Initially, cyclic voltammetry was used to investigate the redox properties of this modified electrode at various scan rates. Next, the mediated oxidation of LD at the modified electrode was described. At the optimum pH of 7.0, the oxidation of LD occurs at a potential about 150 mV less positive than that of an unmodified carbon paste electrode. Based on differential pulse voltammetry (DPV), the oxidation of LD exhibited a dynamic range between 0.1 and 100.0 µM and a detection limit (3σ) of 69 ± 2 nM. DPV was used for simultaneous determination of LD and CD at the modified electrode, and quantitation of LD and CD in some real samples (such as tablets of Parkin-C Fort and Madopar, water, urine, and human blood serum) by the standard addition method.


Assuntos
Técnicas Biossensoriais/métodos , Carbidopa/análise , Levodopa/análise , Antiparkinsonianos/análise , Carbono , Técnicas Eletroquímicas , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas , Metaloporfirinas , Oxirredução , Titânio
8.
Nanoscale ; 3(4): 1683-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21321783

RESUMO

In the present paper, the use of a carbon paste electrode modified by quinizarine (QZ) and TiO(2) nanoparticles prepared by a simple and rapid method was described. The heterogeneous electron-transfer properties of quinizarine coupled to TiO(2) nanoparticles at a carbon paste electrode was investigated using cyclic voltammetry and chronoamperometry in aqueous buffer solutions. The modified electrode showed excellent character for the electrocatalytic oxidization of hydrazine (HZ). Differential pulse voltammetric peak currents of HZ increased linearly with their concentrations at the range of 0.5 µM to 1900.0 µM and the detection limit (2σ) was determined to be 77 nM. Finally, this method was used for the determination of HZ in water samples, using a standard addition method.


Assuntos
Condutometria/instrumentação , Eletrodos , Hidrazinas/análise , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Titânio/química , Poluentes Químicos da Água/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Hidrazinas/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA