Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Res ; 204(Pt A): 111926, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34461120

RESUMO

The present study aimed to assess the efficiency of silver bio-nanoparticles (Ag-NPs) in inactivating of the Aspergillus fumigatus, A. parasiticus and A. flavus var. columnaris and A. aculeatus spores. The AgNPs were synthesized in secondary metabolic products of Penicillium pedernalens 604 EAN. The inactivation process was optimized by response surface methodology (RSM) as a function of Ag NPs volume (1-10 µL/mL); time (10-120 min); pH (5-8); initial fungal concentrations (log10) (3-6). The artificial neural network (ANN) model was used to understand the behavior of spores for the factors affecting inactivation process. The best conditions to achieved SAL 10-6 of the fungal spores were recorded with 3.46 µl/mL of AgNPs, after 120 min at pH 5 and with 6 log of initial fungal spore concentrations, at which 5.99 vs. 6.09 (SAL 10-6) log reduction was recorded in actual and predicted results respectively with coefficient of 87.00%. The ANN revealed that the timehas major contribution in the inactivation process compare to Ag NPs volume. The fungal spores were totally inactivated (SAL 10-6, 6 log reduction with 99.9999%) after 110 min of the inactivation process, 10 min more was required to insure the irreversible inactivation of the fungal spores. The absence of protease and cellulase enzymes production confirm the total inactivation of the fungal spores. FESEM analysis revealed that the AgNPs which penetrated the fungal spores leading to damage and deform the fungal spore morphology. The AFM analysis confirmed the total spore surface damage. The bands in the range of the Raman spectroscopy from 1300 to 1600 cm-1 in the inactivated spores indicate the presence of CH3, CH2 and the deformation of lipids released outside the spore cytoplasm. These finding indicate that the AgNPs has high potential as a green alternative inactivation process for the airborne fungal spores.


Assuntos
Nanopartículas , Penicillium , Redes Neurais de Computação , Prata , Esporos Fúngicos
2.
BMC Microbiol ; 18(1): 196, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477427

RESUMO

BACKGROUND: The field of diagnostics continues to advance rapidly with a variety of novel approaches, mainly dependent upon high technology platforms. Nonetheless much diagnosis, particularly in developing countries, still relies upon traditional methods such as microscopy. Biological material, particularly nucleic acids, on archived glass slides is a potential source of useful information both for diagnostic and epidemiological purposes. There are significant challenges faced when examining archived samples in order that an adequate amount of amplifiable DNA can be obtained. Herein, we describe a model system to detect low numbers of bacterial cells isolated from glass slides using (laser capture microscopy) LCM coupled with PCR amplification of a suitable target. RESULTS: Mycobacterium smegmatis was used as a model organism to provide a proof of principle for a method to recover bacteria from a stained sample on a glass slide using a laser capture system. Ziehl-Neelsen (ZN) stained cells were excised and catapulted into tubes. Recovered cells were subjected to DNA extraction and pre-amplified with multiple displacement amplification (MDA). This system allowed a minimum of 30 catapulted cells to be detected following a nested real-time PCR assay, using rpoB specific primers. The combination of MDA and nested real-time PCR resulted in a 30-fold increase in sensitivity for the detection of low numbers of cells isolated using LCM. CONCLUSIONS: This study highlights the potential of LCM coupled with MDA as a tool to improve the recovery of amplifiable nucleic acids from archived glass slides. The inclusion of the MDA step was essential to enable downstream amplification. This platform should be broadly applicable to a variety of diagnostic applications and we have used it as a proof of principle with a Mycobacterium sp. model system.


Assuntos
DNA Bacteriano/isolamento & purificação , Microscopia Confocal/métodos , Mycobacterium smegmatis/isolamento & purificação , DNA Bacteriano/genética , Vidro/análise , Humanos , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/classificação , Mycobacterium smegmatis/genética , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Coloração e Rotulagem/instrumentação
3.
Polymers (Basel) ; 14(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35267843

RESUMO

Tissue engineering (TE) is an innovative approach to tackling many diseases and body parts that need to be replaced by developing artificial tissues and organs. Bioinks play an important role in the success of various TE applications. A bioink refers to a combination of a living cell, biomaterials, and bioactive molecules deposited in a layer-by-layer form to fabricate tissue-like structures. The research on bioink attempts to offer a 3D complex architecture and control cellular behavior that improve cell physical properties and viability. This research proposed a new multi-material bioink based on alginate (A), gelatin (G), and cholesteryl ester liquid crystals (CELC) biomaterials, namely (AGLC) bioinks. The development of AGLC was initiated with the optimization of different concentrations of A and G gels to obtain a printable formulation of AG gels. Subsequently, the influences of different concentrations of CELC with AG gels were investigated by using a microextrusion-based 3D bioprinting system to obtain a printed structure with high shape fidelity and minimum width. The AGLC bioinks were formulated using AG gel with 10% weight/volume (w/v) of A and 50% w/v G (AG10:50) and 1%, 5%, 10%, 20%, and 40% of CELC, respectively. The AGLC bioinks yield a high printability and resolution blend. The printed filament has a minimum width of 1.3 mm at a 1 mL/min extrusion rate when the A equals 10% w/v, G equals 50% w/v, and CELC equals 40% v/v (AGLC40). Polymerization of the AGLC bioinks with calcium (Ca2+) ions shows well-defined and more stable structures in the post-printing process. The physicochemical and viability properties of the AGLC bioinks were examined by FTIR, DSC, contact angle, FESEM, MTT assay, and cell interaction evaluation methods. The FTIR spectra of the AGLC bioinks exhibit a combination of characteristics vibrations of AG10:50 and CELC. The DSC analysis indicates the high thermal stability of the bioinks. Wettability analysis shows a reduction in the water absorption ability of the AGLC bioinks. FESEM analysis indicates that the surface morphologies of the bioinks exhibit varying microstructures. In vitro cytotoxicity by MTT assay shows the ability of the bioinks to support the biological activity of HeLa cells. The AGLC bioinks show average cell viability of 82.36% compared to the control (90%). Furthermore, cultured cells on the surface of AGLC bioinks showed that bioinks provide favorable interfaces for cell attachment.

4.
J Hazard Mater ; 419: 126500, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34214856

RESUMO

The present study aimed to investigate the removal efficiency of cephalexin (CFX) by a novel Cu-Zn bionanocomposite biosynthesized in the secondary metabolic products of Aspergillus arenarioides EAN603 with pumpkin peels medium (CZ-BNC-APP). The optimization study was performed based on CFX concentrations (1, 10.5 and 20 ppm); CZ-BNC-APP dosage (10, 55 and 100 mg/L); time (10, 55 and 100 min), temperature (20, 32.5 and 45 °C). The artificial neural network (ANN) model was used to understand the CFX behavior for the factors affecting removal process. The CZ-BNC-APP showed an irregular shape with porous structure and size between 20 and 80 nm. The FTIR detected CC, C-O and OH groups. ANN model revealed that CZ-BNC-APP dosage exhibited the vital role in the removal process, while the removal process having a thermodynamic nature. The CFX removal was optimized with 12.41 ppm CFX, 60.60 mg/L of CZ-BNC-APP, after 97.55 min and at 35 °C, the real maximum removal was 95.53% with 100.52 mg g-1 of the maximum adsorption capacity and 99.5% of the coefficient. The adsorption of CFX on CZ-BNC-APP was fitted with pseudo-second-order model and both Langmuir and Freundlich isotherms models. These findings revealed that CZ-BNC-APP exhibited high potential to remove CFX.


Assuntos
Cucurbita , Poluentes Químicos da Água , Adsorção , Aspergillus , Cefalexina , Concentração de Íons de Hidrogênio , Cinética , Redes Neurais de Computação , Poluentes Químicos da Água/análise , Zinco
5.
J Hazard Mater ; 419: 126418, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171673

RESUMO

The current review highlighted the quantitative microbiological risk assessment of Vibrio parahaemolyticus in Prawn farm wastewaters (PFWWs) and the applicability of nanoparticles for eliminating antibiotic-resistant bacteria (ARB). The high availability of the antibiotics in the environment and their transmission into human through the food-chain might cause unknown health effects. The aquaculture environments are considered as a reservoir for the antibiotic resistance genes (ARGs) and contributed effectively in the increasing of ABR. The metagenomic analysis is used to explore ARGs in the non-clinical environment. V. parahaemolyticus is among the pathogenic bacteria which are transmitted through sea food causing human acute gastroenteritis due to available thermostable direct hemolysin (tdh), adhesins, TDH related hemolysin (trh). The inactivation of pathogenic bacteria using nanoparticles act by disturbing the cell membrane, interrupting the transport system, DNA and mitochondria damage, and oxidizing the cellular component by reactive oxygen species (ROS). The chloramphenicol, nitrofurans, and nitroimidazole are among the prohibited drugs in fish and fishery product. The utilization of probiotics is the most effective and safe alternative for antibiotics in Prawn aquaculture. This review will ensure public understanding among the readers on how they can decrease the risk of the antimicrobial resistance distribution in the environment.


Assuntos
Microbiota , Nanopartículas , Probióticos , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Antibacterianos/farmacologia , Bactérias/genética , Humanos , Medição de Risco , Águas Residuárias
6.
J Hazard Mater ; 417: 126040, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34000703

RESUMO

In this article, the removal of cephalexin (CFX) antibiotic from non-clinical environment is reviewed. Adsorption and photocatalytic degradation techniques are widely used to remove CFX from waters and wastewaters, the combination of these methods is becoming more common for CFX removal. The treatment methods of CFX has not been reviewed before, the present article aim is to organize the scattered available information regarding sustainable approaches for CFX removal from non-clinical environment. These include adsorption by nanoparticles, bacterial biomass, biodegradation by bacterial enzymes and the photocatalysis using different catalysts and Photo-Fenton photocatalysis. The metal-organic frameworks (MOFs) appeared to have high potential for CFX degradation. It is evident from the recently papers reviewed that the effective methods could be used in place of commercial activated carbon. The widespread uses of photocatalytic degradation for CFX remediation are strongly recommended due to their engineering applicability, technical feasibility, and high effectiveness. The adsorption capacity of the CFX is ranging from 7 mg CFX g-1 of activated carbon nanoparticles to 1667 mg CFX g-1 of Nano-zero-valent iron from Nettle. In contrast, the photo-degradation was 45% using Photo-Fenton while has increased to 100% using heterogeneous photoelectro-Fenton (HPEF) with UVA light using chalcopyrite catalyst.


Assuntos
Cefalexina , Poluentes Químicos da Água , Adsorção , Antibacterianos , Águas Residuárias , Poluentes Químicos da Água/análise
7.
J Hazard Mater ; 386: 121954, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31884363

RESUMO

The present study deals with optimizing, producing, characterizing, application and techno- economic analysis of oxidative enzymes [Laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP)] from Aspergillus iizukae EAN605 in submerged fermentation process using pumpkin peels as a production substrate. The best operating parameters for producing Lac, MnP and LiP (6.15, 2.58 and 127.99 U mg-1 respectively) were recorded with 20 g 100 mL-1 of substrate, 4.6 mL 100 mL-1 of inoculum size at pH 5.5 after 10 days. The crude enzyme exhibited high stability at pH (3-9) and temperatures (20-60 °C). Km (Michaelis-Menten) of Lac, MnP and LiP crude enzyme was 2.25, 1.79 and 0.72 mM respectively. The decolourization of Remazol Brilliant Blue R by the crude enzyme was 84.84 %. The techno-economic analysis was assessed for a production unit with an annual operating time for enzymatic production and application is 7920 h/year and 100 m3 of the capacity. The process would produce 27,000 cm3 of crude enzyme with a price of USD 0.107 per cm3 compared to USD 1 per cm3 of the current commercial enzyme. The findings indicated that pumpkin peels have potential as a production substrate for oxidative enzymes from A. iizukae EAN605 and is economically feasible.


Assuntos
Aspergillus/enzimologia , Reatores Biológicos/microbiologia , Cucurbita/química , Lacase/isolamento & purificação , Peroxidases/isolamento & purificação , Reatores Biológicos/economia , Celulose/química , Análise Custo-Benefício , Fermentação , Especificidade por Substrato
8.
Top Curr Chem (Cham) ; 377(3): 17, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31134390

RESUMO

In this article, the utilization of fungi for the degradation of xenobiotic organic compounds (XOCs) from different wastewater and aqueous solutions has been reviewed. The myco-remediation (myco-enzymes, myco-degradation, and myco-sorption) process is widely used to remove XOCs, which are not easily biodegradable. The removal of XOCs from textile wastewaters through chemical and physical processes has been addressed by many researchers. Currently, the application of oxidative enzymes [manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase] and myco-adsorption is becoming more common for the removal of XOCs from wastewater. Although the advanced oxidation process (AOPs) is a preferred technology for removing XOCs, its use is restricted due to its relatively high cost, which led to research studies on non-traditional and low-cost technology. The current review aimed to organize the scattered available information on the potential of myco-remediation for XOC removal. Moreover, the utilization of agricultural wastes as a production substrate for oxidative enzymes has been reported by many authors. Agricultural waste materials are highly inducible for oxidative enzyme production by fungi and are cost-effective in comparison to commercial substances. It is evident from the literature survey of 80 recently published papers that myco-enzymes have demonstrated outstanding XOC removal capabilities. Fungal laccase enzyme is the first step to degrade the lignin and then to get the carbon source form the cellulose by cellulose enzyme.


Assuntos
Biodegradação Ambiental , Compostos Orgânicos/metabolismo , Xenobióticos/metabolismo , Adsorção , Fungos/enzimologia , Oxirredutases/metabolismo , Eliminação de Resíduos Líquidos
9.
PLoS One ; 14(9): e0221522, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513594

RESUMO

The inactivation of antibiotic resistant Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) seeded in greywater by bimetallic bio-nanoparticles was optimized by using response surface methodology (RSM). The bimetallic nanoparticles (Cu/Zn NPs) were synthesized in secondary metabolite of a novel fungal strain identified as Aspergillus iizukae EAN605 grown in pumpkin medium. Cu/Zn NPs were very effective for inhibiting growth of E. coli and S. aureus. The maximum inactivation was optimized with 0.028 mg mL-1 of Cu/Zn NPs, at pH 6 and after 60 min, at which the reduction of E. coli and S. aureus was 5.6 vs. 5.3 and 5.2 vs. 5.4 log reduction for actual and predicted values, respectively. The inactivation mechanism was described based on the analysis of untreated and treated bacterial cells by Field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray Spectroscopy (EDS), Atomic Force Microscopy (AFM) revealed a damage in the cell wall structure due to the effect of Cu/Zn NPs. Moreover, the Raman Spectroscopy showed that the Cu/Zn NPs led to degradation of carbohydrates and amino structures on the bacteria cell wall. The Fourier transform infrared spectroscopy (FTIR) analysis confirmed that the destruction take place in the C-C bond of the functional groups available in the bacterial cell wall. The techno economic analysis revealed that the biosynthesis Cu/Zn NPs is economically feasible. These findings demonstrated that Cu/Zn NPs can effectively inhibit pathogenic bacteria in the greywater.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/farmacologia , Aspergillus/crescimento & desenvolvimento , Cobre/química , Águas Residuárias/microbiologia , Zinco/química , Antibacterianos/química , Aspergillus/metabolismo , Parede Celular , Cucurbita/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Metabolismo Secundário , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação
10.
Environ Sci Pollut Res Int ; 25(22): 21682-21692, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29785605

RESUMO

The present study aimed to select the best medium for inactivation of Aspergillus fumigatus, Aspergillus spp. in section Nigri, A. niger, A. terreus var. terreus, A. tubingensis, Penicillium waksmanii, P. simplicissimum, and Aspergillus sp. strain no. 145 spores in clinical wastes by using supercritical carbon dioxide (SC-CO2). There were three types of solutions used including normal saline, seawater, distilled water, and physiological saline with 1% of methanol; each solution was tested at 5, 10, and 20 mL of the water contents. The experiments were conducted at the optimum operating parameters of supercritical carbon dioxide (30 MPa, 75 °C, 90 min). The results showed that the inactivation rate was more effective in distilled water with the presence of 1% methanol (6 log reductions). Meanwhile, the seawater decreases inactivation rate more than normal saline (4.5 vs. 5.1 log reduction). On the other hand, the experiments performed with different volumes of distilled water (5, 10, and 20 mL) indicated that A. niger spores were completely inactivated with 10 mL of distilled water. The inactivation rate of fungal spores decreased from 6 to 4.5 log as the amount of distilled water increased from 10 to 20 mL. The analysis for the spore morphology of A. fumigatus and Aspergillus spp. in section Nigri using scanning electron microscopy (SEM) has revealed the role of temperature and pressure in the SC-CO2 in the destruction of the cell walls of the spores. It can be concluded that the distilled water represent the best medium for inactivation of fungal spores in the clinical solid wastes by SC-CO2.


Assuntos
Aspergillus , Desinfecção/métodos , Eliminação de Resíduos de Serviços de Saúde/métodos , Penicillium , Esporos Fúngicos , Dióxido de Carbono , Pressão , Água do Mar , Temperatura , Água
11.
Infect Dis (Auckl) ; 6: 39-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24847176

RESUMO

Tuberculosis globally results in almost 2 million human deaths annually, with 1 in 4 deaths from tuberculosis being human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS)-related. Primarily a pathogen of the respiratory system, aerobic Mycobacterium tuberculosis complex (MTBC) infects the lungs via the inhalation of infected aerosol droplets generated by people with pulmonary disease through coughing. This review focuses on M. tuberculosis transmission, epidemiology, detection methods and technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA