Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nucleic Acids Res ; 45(3): 1130-1143, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180284

RESUMO

The rules of engagement between zinc finger transcription factors and DNA have been partly defined by in vitro DNA-binding and structural studies, but less is known about how these rules apply in vivo. Here, we demonstrate how a missense mutation in the second zinc finger of Krüppel-like factor-1 (KLF1) leads to degenerate DNA-binding specificity in vivo, resulting in ectopic transcription and anemia in the Nan mouse model. We employed ChIP-seq and 4sU-RNA-seq to identify aberrant DNA-binding events genome wide and ectopic transcriptional consequences of this binding. We confirmed novel sequence specificity of the mutant recombinant zinc finger domain by performing biophysical measurements of in vitro DNA-binding affinity. Together, these results shed new light on the mechanisms by which missense mutations in DNA-binding domains of transcription factors can lead to autosomal dominant diseases.


Assuntos
DNA/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Transcriptoma/genética , Dedos de Zinco/genética , Animais , Linhagem Celular , Sobrevivência Celular/genética , Células Eritroides/metabolismo , Eritropoese/genética , Humanos , Fatores de Transcrição Kruppel-Like/química , Camundongos , Modelos Genéticos , Modelos Moleculares , Proteínas Mutantes/química , Mutação de Sentido Incorreto , Ligação Proteica
2.
Blood ; 125(15): 2405-17, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25724378

RESUMO

We describe a case of severe neonatal anemia with kernicterus caused by compound heterozygosity for null mutations in KLF1, each inherited from asymptomatic parents. One of the mutations is novel. This is the first described case of a KLF1-null human. The phenotype of severe nonspherocytic hemolytic anemia, jaundice, hepatosplenomegaly, and marked erythroblastosis is more severe than that present in congenital dyserythropoietic anemia type IV as a result of dominant mutations in the second zinc-finger of KLF1. There was a very high level of HbF expression into childhood (>70%), consistent with a key role for KLF1 in human hemoglobin switching. We performed RNA-seq on circulating erythroblasts and found that human KLF1 acts like mouse Klf1 to coordinate expression of many genes required to build a red cell including those encoding globins, cytoskeletal components, AHSP, heme synthesis enzymes, cell-cycle regulators, and blood group antigens. We identify novel KLF1 target genes including KIF23 and KIF11 which are required for proper cytokinesis. We also identify new roles for KLF1 in autophagy, global transcriptional control, and RNA splicing. We suggest loss of KLF1 should be considered in otherwise unexplained cases of severe neonatal NSHA or hydrops fetalis.


Assuntos
Anemia Neonatal/genética , Anemia Neonatal/patologia , Deleção de Genes , Hidropisia Fetal/genética , Hidropisia Fetal/patologia , Fatores de Transcrição Kruppel-Like/genética , Transcriptoma , Anemia Neonatal/sangue , Anemia Neonatal/complicações , Autofagia , Eritroblastos/metabolismo , Eritroblastos/patologia , Eritropoese , Feminino , Regulação da Expressão Gênica , Humanos , Hidropisia Fetal/sangue , Recém-Nascido , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino
3.
Genomics ; 105(2): 116-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25451176

RESUMO

Position-effect variegation of transgene expression is sensitive to the chromatin state. We previously reported a forward genetic screen in mice carrying a variegated α-globin GFP transgene to find novel genes encoding epigenetic regulators. We named the phenovariant strains "Mommes" for modifiers of murine metastable epialleles. Here we report positional cloning of mutations in two Momme strains which result in suppression of variegation. Both strains harbour point mutations in the erythroid transcription factor, Klf1. One (D11) generates a stop codon in the zinc finger domain and a homozygous null phenotype. The other (D45) generates an amino acid transversion (H350R) within a conserved linker between zinc fingers two and three. Homozygous MommeD45 mice have chronic microcytic anaemia which models the phenotype in a recently described family. This is the first genetic evidence that the linkers between the zinc fingers of transcription factors have a function beyond that of a simple spacer.


Assuntos
Efeitos da Posição Cromossômica , Fatores de Transcrição Kruppel-Like/genética , Mutação , alfa-Globinas/genética , Anemia/genética , Animais , Testes Genéticos/métodos , Camundongos , Camundongos Transgênicos/embriologia , Camundongos Transgênicos/genética , Esplenomegalia/genética , Dedos de Zinco/genética
4.
Genome Res ; 22(12): 2385-98, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22835905

RESUMO

KLF1 (formerly known as EKLF) regulates the development of erythroid cells from bi-potent progenitor cells via the transcriptional activation of a diverse set of genes. Mice lacking Klf1 die in utero prior to E15 from severe anemia due to the inadequate expression of genes controlling hemoglobin production, cell membrane and cytoskeletal integrity, and the cell cycle. We have recently described the full repertoire of KLF1 binding sites in vivo by performing KLF1 ChIP-seq in primary erythroid tissue (E14.5 fetal liver). Here we describe the KLF1-dependent erythroid transcriptome by comparing mRNA-seq from Klf1(+/+) and Klf1(-/-) erythroid tissue. This has revealed novel target genes not previously obtainable by traditional microarray technology, and provided novel insights into the function of KLF1 as a transcriptional activator. We define a cis-regulatory module bound by KLF1, GATA1, TAL1, and EP300 that coordinates a core set of erythroid genes. We also describe a novel set of erythroid-specific promoters that drive high-level expression of otherwise ubiquitously expressed genes in erythroid cells. Our study has identified two novel lncRNAs that are dynamically expressed during erythroid differentiation, and discovered a role for KLF1 in directing apoptotic gene expression to drive the terminal stages of erythroid maturation.


Assuntos
Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/genética , RNA Mensageiro/genética , Transcriptoma , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Diferenciação Celular , Mapeamento Cromossômico , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Células Eritroides/citologia , Células Eritroides/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Perfilação da Expressão Gênica , Marcação In Situ das Extremidades Cortadas , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos , Proteína 1 de Leucemia Linfocítica Aguda de Células T
5.
Curr Opin Hematol ; 20(3): 193-200, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23474875

RESUMO

PURPOSE OF REVIEW: Krüppel-like factor 1 (KLF1) regulates most aspects of erythropoiesis. Many years ago, transgenic mouse studies implicated KLF1 in the control of the human γ-globin to ß-globin switch. In this review, we will integrate these initial studies with recent developments in human genetics to discuss our present understanding of how KLF1 and its target genes direct the switch. RECENT FINDINGS: Recent studies have shown that human mutations in KLF1 are common and mostly asymptomatic, but lead to significant increases in levels of fetal hemoglobin (HbF) (α2γ2) and adult HbA2 (α2δ2). Genome-wide association studies (GWAS) have demonstrated that three primary loci are associated with increased HbF levels in the population: the ß-globin locus itself, the BCL11A locus, and a site between MYB and HBS1L. We discuss evidence that KLF1 directly regulates BCL11A, MYB and other genes, which are involved directly or indirectly in γ-globin silencing, thus providing a link between GWAS and KLF1 in hemoglobin switching. SUMMARY: KLF1 regulates the γ-globin to ß-globin genetic switch by many mechanisms. Firstly, it facilitates formation of an active chromatin hub (ACH) at the ß-globin gene cluster. Specifically, KLF1 conscripts the adult-stage ß-globin gene to replace the γ-globin gene within the ACH in a stage-specific manner. Secondly, KLF1 acts as a direct activator of genes that encode repressors of γ-globin gene expression. Finally, KLF1 is a regulator of many components of the cell cycle machinery. We suggest that dysregulation of these genes leads to cell cycle perturbation and 'erythropoietic stress' leading to indirect upregulation of HbF.


Assuntos
Genes de Troca/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Globinas beta/genética , gama-Globinas/genética , Eritropoese/genética , Eritropoese/fisiologia , Regulação da Expressão Gênica , Rearranjo Gênico/genética , Rearranjo Gênico/fisiologia , Genes de Troca/fisiologia , Estudo de Associação Genômica Ampla , Humanos
6.
Genome Res ; 20(8): 1052-63, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20508144

RESUMO

KLF1 regulates a diverse suite of genes to direct erythroid cell differentiation from bipotent progenitors. To determine the local cis-regulatory contexts and transcription factor networks in which KLF1 operates, we performed KLF1 ChIP-seq in the mouse. We found at least 945 sites in the genome of E14.5 fetal liver erythroid cells which are occupied by endogenous KLF1. Many of these recovered sites reside in erythroid gene promoters such as Hbb-b1, but the majority are distant to any known gene. Our data suggests KLF1 directly regulates most aspects of terminal erythroid differentiation including production of alpha- and beta-globin protein chains, heme biosynthesis, coordination of proliferation and anti-apoptotic pathways, and construction of the red cell membrane and cytoskeleton by functioning primarily as a transcriptional activator. Additionally, we suggest new mechanisms for KLF1 cooperation with other transcription factors, in particular the erythroid transcription factor GATA1, to maintain homeostasis in the erythroid compartment.


Assuntos
Células Eritroides/metabolismo , Eritropoese/genética , Fatores de Transcrição Kruppel-Like/genética , Animais , Apoptose/genética , Sequência de Bases , Citoesqueleto/genética , Membrana Eritrocítica/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Expressão Gênica , Globinas/biossíntese , Globinas/genética , Heme/biossíntese , Heme/genética , Camundongos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas
7.
BMC Bioinformatics ; 13: 331, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23237380

RESUMO

BACKGROUND: Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions. RESULTS: We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions. CONCLUSIONS: Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.


Assuntos
Biologia Computacional/métodos , RNA Longo não Codificante/genética , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/estatística & dados numéricos , Animais , Sequência de Bases , Éxons , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Fases de Leitura Aberta , Transcriptoma/genética
8.
J Biol Chem ; 284(31): 20966-74, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19457859

RESUMO

Differentiation of erythroid cells requires precise control over the cell cycle to regulate the balance between cell proliferation and differentiation. The zinc finger transcription factor, erythroid Krüppel-like factor (EKLF/KLF1), is essential for proper erythroid cell differentiation and regulates many erythroid genes. Here we show that loss of EKLF leads to aberrant entry into S-phase of the cell cycle during both primitive and definitive erythropoiesis. This cell cycle defect was associated with a significant reduction in the expression levels of E2f2 and E2f4, key factors necessary for the induction of S-phase gene expression and erythropoiesis. We found and validated novel intronic enhancers in both the E2f2 and E2f4 genes, which contain conserved CACC, GATA, and E-BOX elements. The E2f2 enhancer was occupied by EKLF in vivo. Furthermore, we were able to partially restore cell cycle dynamics in EKLF(-/-) fetal liver upon additional genetic depletion of Rb, establishing a genetic causal link between reduced E2f2 and the EKLF cell cycle defect. Finally, we propose direct regulation of the E2f2 enhancer is a generic mechanism by which many KLFs regulate proliferation and differentiation.


Assuntos
Ciclo Celular , Fator de Transcrição E2F2/metabolismo , Células Eritroides/citologia , Células Eritroides/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F4/genética , Fator de Transcrição E2F4/metabolismo , Elementos Facilitadores Genéticos/genética , Eritropoese , Deleção de Genes , Regulação da Expressão Gênica , Íntrons/genética , Fatores de Transcrição Kruppel-Like/deficiência , Camundongos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína do Retinoblastoma/metabolismo , Fase S , Fatores de Transcrição/metabolismo
9.
IUBMB Life ; 62(12): 886-90, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21190291

RESUMO

The molecular events and transcriptional mechanisms that underlie erythropoiesis are of great interest to biologists and hematologists since disorders of erythrocytes are common and remain relatively poorly understood. Kruppel-like factor 1 (KLF1) is a critical transcription factor for erythropoiesis in mice and man. Recently the use of chromatin immunoprecipitation (ChIP) coupled to next-generation DNA sequencing (ChIP-seq) has led to an updated understanding of how KLF1 functions in vivo. The full extent of KLF1 target genes have provided new insights into erythropoiesis, and have established that KLF1 controls almost all aspects of erythroid cell development and maturation.


Assuntos
Diferenciação Celular , Células Eritroides/metabolismo , Eritropoese , Fatores de Transcrição Kruppel-Like , Animais , Apoptose/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Imunoprecipitação da Cromatina , Células Eritroides/citologia , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento , Hemoglobinas/biossíntese , Hemoglobinas/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas
10.
Haematologica ; 95(1): 144-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19850899

RESUMO

Commitment towards megakaryocyte versus erythroid blood cell lineages occurs in the megakaryocyte-erythroid progenitor, where mutually exclusive expression of either EKLF (Klf1) or Fli1 defines alternative outcomes. Here we show there is a marked increase in the number of circulating platelets in mice lacking the erythroid transcription factor EKLF. In addition, committed erythroid cells retain key signatures of megakaryocytes both on the cell surface and at the mRNA level. We also show that the effect of EKLF on megakaryocyte-erythroid progenitor lineage decision and commitment is cell autonomous in bone marrow reconstitution assays where stem cells lacking EKLF favor the megakaryocyte differentiation pathway. We conclude the megakaryocyte program is aberrantly activated in EKLF null erythroid cells.


Assuntos
Linhagem da Célula/genética , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Células Progenitoras de Megacariócitos e Eritrócitos/citologia , Células Progenitoras de Megacariócitos e Eritrócitos/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição Kruppel-Like/sangue , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA