Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(5): 876-887, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126943

RESUMO

The principal aim of this study is to reduce considerably, via Sn doping, the resistivity of ZnO thin films prepared by simple, flexible, and cost-effective nitrogen pneumatic spray pyrolysis (NPSP) method on glass substrates at a temperature of 400°C. Different Sn content was tested (Sn/Zn = 0, 1, 3, 5 wt%) in an attempt to reduce the concentration of excessive oxygen atoms and create more free electrons. The microstructural, optical, morphological, and electrical properties of the films have been studied. The x-ray diffraction analysis demonstrated that tin-doped SZO films exhibited polycrystalline nature with a preferential orientation along (002) plane with the appearance of a new orientation (101) with the increase of Sn concentration leading then to bidirectional growth. The deposited SZO films showed an average optical transmittance of about 80% in the UV-visible region (200-800 nm) with optical band gap values at around 3.27 eV. Photoluminescence emissions of SZO samples presented three main peaks: near band edge emission, violet emission, and the blue-green emission. The surface morphology of the films obtained by scanning electron microscope (SEM) exhibited the change in morphology with increasing the Sn content. A minimum electrical resistivity value of about 17·10-3 Ω·cm was obtained for 3% SZO films. SZO films prepared by the NPSP method can be used as transparent window layer and electrodes in solar cells. RESEARCH HIGHLIGHTS: Highly oriented, conducting, and transparent Sn-doped ZnO films are successfully synthesized. The film growth orientation changed from mono-directional (002) axis to bi-directional (002) and (101) axis according to Sn doping. Ultraviolet and green emissions are noted by photoluminescence investigation. A minimum resistivity is observed for 3 wt% SZO film. The dual positive effect of the carrier gas used (N2) and Sn doping is confirmed.

2.
Microsc Res Tech ; 87(8): 1974-1983, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38590286

RESUMO

As the first boundary between the environment and the material, the surface plays an important role in their interaction with each other, therefore, the use of appropriate tools and analysis to examine the mechanical properties and morphology of surfaces has particular importance in industry and research. In this research, a thin film of nickel was deposited on metal substrates made of aluminum, copper, and steel by using the RF magnetic cathode. Then, using a non-contact atomic force microscope, the morphological properties of the nickel film with static parameters, Minkowski functionals (MF's), fractal, and multifractal were extracted to be analyzed and studied. After that, using parameters such as root mean square (RMS) roughness, skewness, and kurtosis, it was determined how the surface roughness, distribution, and probability density of particles on the film surface alters with the change of the substrate. Next, by examining and analyzing the Δα and Δf parameters obtained from the multifractal section, the morphology of the produced film on the metal substrates was investigated. Then, the change in the surface plasmon resonance (SPR) peak position is changed for the prepared film in the range of the absorption spectrum due to the substrate effect and the microstructural properties of the formed film. HIGHLIGHTS: Ni film has been deposited by Rf magnetron sputtering. The effect of metal substrates on the topography, fractality, and optical properties was studied. Minkowski functionals were used to investigate the surface morphology of the samples. Substrate's material and the topography of the formed film can changed the surface plasmon resonance position.

3.
Microsc Res Tech ; 87(7): 1402-1412, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38380821

RESUMO

Utilizing radio frequency magnetron sputtering, we successfully fabricated nickel oxide thin films with different thickness (from 80 to 270 nm), and conducted an in-depth examination of their structural, morphological, optical, and electrical properties. The crystal structure and surface roughness were determined using x-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The XRD analyses showed that the films were composed of cubic nickel oxide, exhibiting a notable orientation along the (200) direction. This crystal texture partially increased when the film thickness reached 270 nm. In addition, a direct correlation between film thickness and crystallite size was observed, with the latter increasing as the former did. AFM analysis provided insights into the surface morphology, revealing metrics like the bearing area, 3D surfaces intersections, and statistical properties of surface height. These insights underscore the relationship between film thickness and surface properties, which in turn influence the overall electrical, and prominently, optical properties of the films. Employing transmittance UV-visible spectroscopy, we characterized the optical behavior of these films, noting a proportional increase in refractive index with film thickness. Additionally, resistivity was observed to increase concomitantly with film thickness. In conclusion, the deposition process's film thickness acts as a pivotal parameter for fine-tuning the structural, morphological, and optical properties of nickel oxide thin films. This knowledge paves the way for optimizing nickel oxide-based devices across various applications. RESEARCH HIGHLIGHTS: We synthesized and characterized of p-type semiconducting NiO thin films sputtered on substrates by using RF magnetron sputtering with different thickness. Advanced crystalline structures and fractal features extracted from XRD and AFM analysis.  The 2D and 3D surface analysis of the samples indicates a complex structure with an imperfect self-similarity that suggests a multifractal structure. We represented graphically the relative representation of higher geometric objects in the AFM image. We attributed the optical and electrical properties of the samples to the crystallite size, and the concurrent reduction in oxygen vacancies and crystalline defects within the films.

4.
Micron ; 184: 103661, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38833994

RESUMO

The silver/magnesium doped hydroxyapatite (AgMgHAp, Ca10-x-yAgxMgy(PO4)6(OH)2, xAg=0.05 and yMg=0.02) nanocomposites coatings were deposited on Si substrate using the dip coating technique. The resulting coatings were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR-ATR) spectroscopy, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The EDS analysis highlighted the presence of the constitutive elements of the silver/magnesium doped hydroxyapatite (AgMgHAp) nanocomposites coatings. The surface microtexture of the AgMgHAp was assessed by atomic force microscopy (AFM) technique. The AFM data suggested the obtaining of a uniform deposited layer comprised of equally distributed nanoconglomerates. FT-IR studies highlighted the presence of vibrational modes associated with the phosphate and hydroxyl groups. No bands associated with silver or magnesium were observed. The XPS analysis highlighted the presence of the constituent elements of hydroxyapatite (Ca 2p, P 2 s, O 1 s), as well as dopants (Ag 3d, Mg 1 s and Mg 2p). The antifungal evaluation of AgMgHAp coatings was carried out using the Candida albicans ATCC 10231 fungal strain. The results of the antifungal assay revealed that the AgMgHAp coatings exhibited a strong inhibitory antifungal activity. Furthermore, the data highlighted that the AgMgHAp inhibited the development of biofilm on their surface. The results revealed that the antifungal activity of the coating varied based on the duration of incubation. On the other hand, the data also showed that AgMgHAp nanocomposites coatings inhibited the fungal cell adhesion and development from the early stages of the incubation. In addition to morphological analysis, we additionally take advantage of AFM images to investigate and explore the domain of fractal and multifractal analysis applied to the films under evaluation. Our studies indicates that nanocomposite coatings made from AgMgHAp demonstrate strong antifungal properties. Our studies indicates that nanocomposite coatings made from AgMgHAp demonstrate strong antifungal properties. These results suggest the potential of AgMgHAp nanocomposite coatings as a promising solution for developing innovative antifungal devices in biomedical applications.


Assuntos
Antifúngicos , Durapatita , Magnésio , Microscopia de Força Atômica , Nanocompostos , Prata , Durapatita/química , Durapatita/farmacologia , Antifúngicos/farmacologia , Prata/farmacologia , Prata/química , Nanocompostos/química , Magnésio/química , Magnésio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Candida albicans/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Testes de Sensibilidade Microbiana , Espectrometria por Raios X , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de Superfície
5.
Polymers (Basel) ; 16(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201790

RESUMO

The new magnesium-doped hydroxyapatite in dextran matrix (10MgHApD) nanocomposites were synthesized using coprecipitation technique. A spherical morphology was observed by scanning electron microscopy (SEM). The X-ray diffraction (XRD) characterization results show hydroxyapatite hexagonal phase formation. The element map scanning during the EDS analysis revealed homogenous distribution of constituent elements of calcium, phosphor, oxygen and magnesium. The presence of dextran in the sample was revealed by Fourier transform infrared (FTIR) spectroscopy. The antimicrobial activity of the 10MgHAPD nanocomposites was assessed by in vitro assays using Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Streptococcus mutans ATCC 25175, Porphyromonas gingivalis ATCC 33277 and Candida albicans ATCC 10231 microbial strains. The results of the antimicrobial assays highlighted that the 10MgHApD nanocomposites presented excellent antimicrobial activity against all the tested microorganisms and for all the tested time intervals. Furthermore, the biocompatibility assays determined that the 10MgHApD nanocomposites did not exhibit any toxicity towards Human gingival fibroblast (HGF-1) cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA