Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808456

RESUMO

The current gold standard of gait diagnostics is dependent on large, expensive motion-capture laboratories and highly trained clinical and technical staff. Wearable sensor systems combined with machine learning may help to improve the accessibility of objective gait assessments in a broad clinical context. However, current algorithms lack flexibility and require large training datasets with tedious manual labelling of data. The current study tests the validity of a novel machine learning algorithm for automated gait partitioning of laboratory-based and sensor-based gait data. The developed artificial intelligence tool was used in patients with a central neurological lesion and severe gait impairments. To build the novel algorithm, 2% and 3% of the entire dataset (567 and 368 steps in total, respectively) were required for assessments with laboratory equipment and inertial measurement units. The mean errors of machine learning-based gait partitions were 0.021 s for the laboratory-based datasets and 0.034 s for the sensor-based datasets. Combining reinforcement learning with a deep neural network allows significant reduction in the size of the training datasets to <5%. The low number of required training data provides end-users with a high degree of flexibility. Non-experts can easily adjust the developed algorithm and modify the training library depending on the measurement system and clinical population.


Assuntos
Inteligência Artificial , Marcha , Algoritmos , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
2.
Biomaterials ; 66: 83-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26196535

RESUMO

Over 300,000 heart valve replacements are performed annually to replace stenotic and regurgitant heart valves. Bioprosthetic heart valves (BHVs), derived from glutaraldehyde crosslinked (GLUT) porcine aortic valve leaflets or bovine pericardium are often used. However, valve failure can occur within 12-15 years due to calcification and/or progressive degeneration. In this study, we have developed a novel fabrication method that utilizes carbodiimide, neomycin trisulfate, and pentagalloyl glucose crosslinking chemistry (TRI) to better stabilize the extracellular matrix of porcine aortic valve leaflets. We demonstrate that TRI treated leaflets show similar biomechanics to GLUT crosslinked leaflets. TRI treated leaflets had better resistance to enzymatic degradation in vitro and demonstrated better tearing toughness after challenged with enzymatic degradation. When implanted subcutaneously in rats for up to 90 days, GLUT control leaflets calcified heavily while TRI treated leaflets resisted calcification, retained more ECM components, and showed better biocompatibility.


Assuntos
Materiais Biocompatíveis/síntese química , Bioprótese , Reagentes de Ligações Cruzadas/química , Matriz Extracelular/química , Matriz Extracelular/transplante , Próteses Valvulares Cardíacas , Animais , Módulo de Elasticidade , Análise de Falha de Equipamento , Masculino , Teste de Materiais , Elastase Pancreática/química , Desenho de Prótese , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Suínos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA