Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Phycol ; 60(2): 541-553, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517088

RESUMO

Harmful algal blooms (HABs) are a global environmental concern, causing significant economic losses in fisheries and posing risks to human health. Algicidal bacteria have been suggested as a potential solution to control HABs, but their algicidal efficacy is influenced by various factors. This study aimed to characterize a novel algicidal bacterium, Maribacter dokdonensis (P4), isolated from a Karenia mikimotoi (Hong Kong strain, KMHK) HAB and assess the impact of P4 and KMHK's doses, growth phase, and algicidal mode and the axenicity of KMHK on P4's algicidal effect. Our results demonstrated that the algicidal effect of P4 was dose-dependent, with the highest efficacy at a dose of 25% v/v. The study also determined that P4's algicidal effect was indirect, with the P4 culture and the supernatant, but not the bacterial cells, showing significant effects. The algicidal efficacy was higher when both P4 and KMHK were in the stationary phase. Furthermore, the P4 culture at the log phase could effectively kill KMHK cells at the stationary phase, with higher algicidal efficacy in the bacterial culture than that of the supernatant alone. Interestingly, P4's algicidal efficacy was significantly higher when co-culturing with xenic KMHK (~90% efficacy at day 1) than that with the axenic KMHK (~50% efficacy at day 1), suggesting the presence of other bacteria could regulate P4's algicidal effect. The bacterial strain P4 also exhibited remarkable algicidal efficacy on four other dinoflagellate species, particularly the armored species. These results provide valuable insights into the algicidal effect of M. dokdonensis on K. mikimotoi and on their interactions.


Assuntos
Dinoflagellida , Flavobacteriaceae , Água , Humanos , Dinoflagellida/fisiologia , Proliferação Nociva de Algas , Bactérias
2.
Environ Sci Technol ; 56(4): 2386-2397, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35089026

RESUMO

Coastal wetlands trap plastics from terrestrial and marine sources, but the stocks of plastics and their impacts on coastal wetlands are poorly known. We evaluated the stocks, fate, and biological and biogeochemical effects of plastics in coastal wetlands with plastic abundance data from 112 studies. The representative abundance of plastics that occurs in coastal wetland sediments and is ingested by marine animals reaches 156.7 and 98.3 items kg-1, respectively, 200 times higher than that (0.43 items kg-1) in the water column. Plastics are more abundant in mangrove forests and tidal marshes than in tidal flats and seagrass meadows. The variation in plastic abundance is related to climatic and geographic zones, seasons, and population density or plastic waste management. The abundance of plastics ingested by pelagic and demersal fish increases with fish length and dry weight. The dominant characteristics of plastics ingested by marine animals are correlated with those found in coastal wetland sediments. Microplastics exert negative effects on biota abundance and mangrove survival but positive effects on sediment nutrients, leaf drop, and carbon emission. We highlight that plastic pollution is widespread in coastal wetlands and actions are urged to include microplastics in ecosystem health and degradation assessment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Poluentes Químicos da Água/análise , Áreas Alagadas
3.
Environ Geochem Health ; 41(1): 175-189, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29876676

RESUMO

The present study compared accumulation of heavy metals in a mangrove swamp dominated by Kandelia obovata with that by Sonneratia apetala in Pearl River Estuary, China. The results showed that the concentrations of heavy metals at all sediment depths in the S. apetala site were significantly higher than that in K. obovata. The geo-accumulation index and potential ecological risk index also showed that S. apetala sediment had a higher contamination of heavy metals, especially Cd. S. apetala significantly altered the biogeochemical cycles of Cd, lead (Pb), nickel (Ni) and chromium (Cr). In S. apetala sediment, TOC played an important role in sequestering heavy metals as reflected by its positive correlations with Zn and Pb. This study demonstrated the importance of plant species in altering soil quality and heavy metal accumulation, and S. apetala is more efficiently working as a pollution barrier than K. obovata.


Assuntos
Sedimentos Geológicos/química , Metais Pesados/análise , Plantas/metabolismo , Rios/química , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Estuários , Medição de Risco , Solo , Especificidade da Espécie , Áreas Alagadas
4.
J Environ Sci (China) ; 75: 296-306, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473295

RESUMO

A clear description of the certain mechanisms of cadmium (Cd) uptake and translocation in rice (Oryza sativa L.) may help to reduce Cd accumulation in rice grain. Hydroponic experiments were carried out to determine the effects of cultivation conditions (aerated and stagnant) on the uptake, translocation and subcellular distribution of Cd in relation to the morphology and anatomy of roots in two rice genotypes with different Cd accumulations in grains. Marked differences in morphology and anatomy were observed between these two genotypes under different cultivation conditions. Genotypes with low Cd accumulation in grains tended to develop fewer root tips per root surface area, larger root porosity and more mature apoplastic barriers. The stagnant cultivation condition decreased the number of root tips per root surface area but increased root porosity and accelerated apoplastic barrier formation in root tissues. Correlative Cd uptake studies revealed that rice plants with fewer number of root tips per root surface area reduced root Cd uptake ability, while mature apoplastic barriers increased root Cd retention in cell walls and the symplast. Thus, the fewer number of root tips per root surface area and the earlier formation of mature apoplastic barriers led to lower Cd uptake and translocation. The results indicated that the morphology and anatomy of roots could play important roles in Cd uptake and translocation in rice, and could be influenced by both genotype and cultivation conditions. The present results would be useful in screening and planting rice plants with low Cd accumulation.


Assuntos
Cádmio/metabolismo , Oryza/fisiologia , Poluentes do Solo/metabolismo , Hidroponia , Oryza/metabolismo
5.
Ecotoxicol Environ Saf ; 162: 430-437, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30015189

RESUMO

Heavy metals and nutrients are commonly found in mangrove sediments, but the effect of nutrients on heavy metals in mangrove plants is not clear. A study quantifying the effects of ammonium nitrogen (NH4+-N) on the accumulation, subcellular distribution and chemical forms of cadmium (Cd) in Kandelia obovata seedlings were conducted. The experiment consisted of four levels of NH4+-N (0, 10, 50 and 100 mg L-1) in each of which consisted of four Cd levels (0, 1, 5 and 10 mg L-1). The results showed that NH4+-N magnified the Cd toxicity due to reduced plant biomass, especially with 10 mg L-1 Cd and 100 mg L-1 NH4+-N supply. NH4+-N, especially at 100 mg L-1, enhanced the concentration and accumulation of Cd in root but its role on Cd translocation from root to stem and leaf was limited, probably due to low translocation factor. At subcellular level, Cd mainly accumulated in root cell wall but its fractionation depended on Cd levels. Under the stress of 1 and 5 mg L-1 Cd, 50 mg L-1 NH4+-N supply improved transfer of Cd from root cell wall into cell, and increased pectate and protein integrated forms of intracellular Cd to alleviate Cd toxicity. Under the stress of 10 mg L-1 Cd, NH4+-N supply promoted the deposition of Cd on root cell wall to restrain its transfer to root cell, which was verified by the reduced levels of pectate and protein integrated forms of Cd in root cell. Thus, NH4+-N supply improved immobilization of Cd in roots and alleviated Cd toxicity through integration with pectate and protein as well as cell wall combinations in root of K. obovata.


Assuntos
Compostos de Amônio/farmacologia , Cádmio/metabolismo , Nitrogênio/farmacologia , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Rhizophoraceae/efeitos dos fármacos , Compostos de Amônio/metabolismo , Parede Celular/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Rhizophoraceae/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
6.
J Environ Qual ; 47(2): 212-220, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29634796

RESUMO

Mangroves are often exposed to contamination by polybrominated diphenyl ethers (PBDEs) from wastewater discharges and solid waste dumping. As one of the most prevalent and toxic PBDE congeners in the environment, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and its oxidative stress deserves more attention. In plants, the glutathione-ascorbate (GSH-AsA) cycle plays an important role in the defensive processes against oxidative stress. However, the importance of this cycle in mangroves to defend against PBDE toxicity has not been reported. We conducted a study to evaluate the effects of BDE-47 on GSH-AsA cycle-related antioxidants in a mangrove species, namely Sheue, H.Y. Liu & J. Yong. An 8-wk hydroponic culture experiment was conducted with 1-yr-old seedlings of exposed to five levels of BDE-47 contamination. At the two high BDE-47 levels (5 and 10 mg L), seedling growth, expressed as dry biomass of leaves and roots, was suppressed from Weeks 4 to 8. Parameters in the GSH-AsA cycle in roots and leaves changed significantly within the first week after exposure, indicating that they were more sensitive indicators to BDE-47 toxicity than growth. The suppression of seedling growth, expressed as final biomass production, at the end of the 8-wk experiment was positively correlated to the antioxidative responses in the first week, confirming the indicative roles of these antioxidants. This is the first study to demonstrate that GSH-AsA cycle-related antioxidants in mangrove plants are sensitive indicators of BDE-47 toxicity. These antioxidants, in particular, ascorbate and glutathione peroxidase, could provide early warning of the toxicity of PBDEs.


Assuntos
Glutationa/química , Éteres Difenil Halogenados/toxicidade , Estresse Oxidativo , Antioxidantes , Avicennia , China , Monitoramento Ambiental , Retardadores de Chama , Plântula , Poluentes Químicos da Água
7.
Environ Sci Technol ; 50(21): 11844-11852, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27723316

RESUMO

This study investigated the efficiency of 12 pilot-scale constructed wetlands (CWs) with different configurations on the removal of estrone and estradiol from raw domestic sewage. An orthogonal design was employed to evaluate the impact of four principal design parameters of CWs, including four wetland types, three substrates, three plant conditions, and three hydraulic loading rates, in summer and winter. A bench-scale anoxic simulation test was performed in the laboratory to clarify the photolysis, sorption, and degradation of estrogens. Estrogens were more effectively removed by the 12 CWs during summer. The experiment showed that target estrogens were efficiently removed by wetland substrate under anoxic conditions through exothermic sorption and degradation even in winter. This suggests that the inefficient removal in CWs in winter likely resulted from subsequent cleavage of a considerable amount of estrogen conjugates in influent due to insufficient decomposition at low temperatures. The transformation from estradiol to estrone could be driven by residual microbial activities not inhibited by azide, and the reversible process was then driven by active microorganisms but not solely abiotic redox reactions. Among the four design parameters, wetland-type was the most important and downward-vertical flow CWs performed best.


Assuntos
Estrona , Áreas Alagadas , Disruptores Endócrinos , Estradiol , Esgotos/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água
8.
Ecotoxicol Environ Saf ; 113: 124-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25497768

RESUMO

Seedlings of Avicennia marina were exposed to single and combined metal treatments of cadmium (Cd) and copper (Cu) in a factorial design, and the combined toxicity of Cu and Cd was tested. The effects of the exogenous jasmonic acid (JA) on chlorophyll concentration, lipid peroxidation, Cd and Cu uptake, antioxidative capacity, endogenous JA concentration, and type-2 metallothionein gene (AmMT2) expression in seedlings of A. marina exposed to combined metal treatments were also investigated. A binary mixture of low-dose Cd (9 µmolL(-1)) and high-dose Cu (900 µmolL(-1)) showed toxicity to the seedlings, indicated by the significant augmentation in leaf malondialdehyde (MDA) and reduction in leaf chlorophylls. The toxicity of the combined metals was significantly alleviated by the addition of exogenous JA at 1 µmolL(-1), and the chlorophyll and MDA contents were found to be restored to levels comparable to those of the control. Compare to treatment with Cd and Cu only, 1 and 10 µmolL(-1) JA significantly enhanced the ascorbate peroxidase activity, and 10 µmolL(-1) JA significantly decreased the uptake of Cd in A. marina leaves. The relative expression of leaf AmMT2 gene was also significantly enhanced by 1 and 10 µmolL(-1) JA, which helped reduce Cd toxicity in A. marina seedlings.


Assuntos
Avicennia/efeitos dos fármacos , Cádmio/toxicidade , Cobre/toxicidade , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Poluentes da Água/toxicidade , Avicennia/crescimento & desenvolvimento , Avicennia/metabolismo , Cádmio/metabolismo , Clorofila/metabolismo , Cobre/metabolismo , Interações Medicamentosas , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Metalotioneína/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
9.
J Environ Sci (China) ; 30: 148-56, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25872721

RESUMO

Mangrove sediment is unique in chemical and biological properties. Many of them suffer polycyclic aromatic hydrocarbon (PAH) contamination. However, the study on PAH biological remediation for mangrove sediment is deficient. Enriched PAH-degrading microbial consortium and electron acceptor amendment are considered as two effective measures. Compared to other electron acceptors, the study on CO2, which is used by methanogens, is still seldom. This study investigated the effect of NaHCO3 amendment on the anaerobic biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr), with or without enriched PAH-degrading microbial consortium in mangrove sediment slurry. The trends of various parameters, including PAH concentrations, microbial population size, electron-transport system activities, electron acceptor and anaerobic gas production were monitored. The results revealed that the inoculation of enriched PAH-degrading consortium had a significant effect with half lives shortened by 7-13 days for 3-ring PAHs and 11-24 days for 4-ring PAHs. While NaHCO3 amendment did not have a significant effect on the biodegradation of PAHs and other parameters, except that CO2 gas in the headspace of experimental flasks was increased. One of the possible reasons is that mangrove sediment contains high concentrations of other electron acceptors which are easier to be utilized by anaerobic bacteria, the other one is that the anaerobes in mangrove sediment can produce enough CO2 gas even without adding NaHCO3.


Assuntos
Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bicarbonato de Sódio/metabolismo , Poluentes Químicos da Água/metabolismo , Anaerobiose , Bactérias/metabolismo , Biodegradação Ambiental , Transporte de Elétrons , Monitoramento Ambiental , Gases/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Consórcios Microbianos , Áreas Alagadas
10.
Ann Bot ; 114(2): 271-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24948669

RESUMO

BACKGROUND AND AIMS: Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. METHODS: Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. KEY RESULTS: The high Se treatment (5 µg g(-1)) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced 'water-soluble' Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. CONCLUSIONS: Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots.


Assuntos
Mercúrio/metabolismo , Oryza/anatomia & histologia , Oryza/metabolismo , Raízes de Plantas/anatomia & histologia , Rizosfera , Selênio/farmacologia , Disponibilidade Biológica , Cinética , Compostos de Metilmercúrio , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Solo/química , Solubilidade , Água/química
11.
Environ Sci Technol ; 48(23): 13917-24, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25382552

RESUMO

Abundant microbes including bacteria, fungi, or algae are capable of biodegrading polycyclic hydrocarbons (PAHs). However, pure cultures never occur in the contaminated environments. This study aimed to understand the general potential mechanisms of interactions between microbes under pollution stress by constructing a consortium of PAH-degrading microalga (Selenastrum capricornutum) and bacterium (Mycobacterium sp. strain A1-PYR). Bacteria alone could grow on the pyrene, whereas the growth of algae alone was substantially inhibited by the pyrene of 10 mg L(-1). In the mixing culture of algae and bacteria, the growth rate of algae was significantly increased from day 4 onward. Rapid bacterial degradation of pyrene might mitigate the toxicity of pyrene to algae. Phenolic acids, the bacterial degradation products of pyrene, could serve as the phytohormone for promoting algal growth in the coculture of algae and bacteria. In turn, bacterial growth was also enhanced by the algae presented in the mixing culture. Consequently, the fastest degradation of pyrene among all biodegradation systems was achieved by the consortium of algae and bacteria probably due to such interactions between the two species by virtue of degradation products. This study reveals that the consortium containing multiple microbial species is high potential for microbial remediation of pyrene-contaminated environments, and provides a new strategy to degrade the recalcitrant PAHs.


Assuntos
Biodegradação Ambiental , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Mycobacterium/metabolismo , Pirenos/metabolismo , Fungos/metabolismo , Hidroxibenzoatos/química , Pirenos/química , Poluentes Químicos da Água/metabolismo
12.
Ecotoxicology ; 23(4): 742-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24420620

RESUMO

In the present study, nitrate, chloride and sulfate anion systems were used to investigate the presence of anions on the removal of Cr(III) by Chlorella miniata. Kinetic studies suggested that the equilibrium time of Cr(III) biosorption was not affected by the presence of different sodium salts, even at the concentration of 1.0 M, and all reached equilibrium after 24 h. Equilibrium experiments showed that the effects of different anions on Cr(III) biosorption varied, and the inhibitory order was SO4 (2-) > Cl(-) > NO3 (-). Langmuir isotherm indicated that the maximum sorption capacity of C. miniata increased with the increase of pH under different anion systems. The strongest inhibition effect of the sulfate system was attributed to the formation of Cr(OH)SO4 aq. and the decrease of Cr(OH)(2+) and Cr(3+) in solution, while the difference of inhibitory effect in the other two anion systems could be accounted by the formation of the inner-sphere surface complex in the nitrate system and the outer-sphere surface complex in the chloride system. The present study suggested that the presence of anions greatly affected the removal of Cr(III) on C. miniata and thereby their transport in the environment.


Assuntos
Chlorella/metabolismo , Cromo/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Cloretos/metabolismo , Cromo/isolamento & purificação , Nitratos/metabolismo , Sulfatos/metabolismo , Poluentes Químicos da Água/isolamento & purificação
13.
Water Res ; 256: 121568, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593607

RESUMO

Constructed wetlands (CWs) are widely used in sewage treatment in rural areas, but there are only a few studies on field-scale CWs in treating wastewater-borne pesticides. In this study, the treatment and metabolic transformation of 29 pesticides in rural domestic sewage by 10 field-scale horizontal flow CWs (HF-CWs), each with a treatment scale of 36‒5000 m3/d and operated for 2‒10 years, in Guangzhou, Southern China was investigated. The risk of pesticides in treated effluent and main factors influencing such risk were evaluated. Results demonstrated that HF-CWs could remove pesticides in sewage and reduce their ecological risk in effluent, but the degree varied among types of pesticides. Herbicides had the highest mean removal rate (67.35 %) followed by insecticides (60.13 %), and the least was fungicides (53.22 %). In terms of single pesticide compounds, the mean removal rate of butachlor was the highest (73.32 %), then acetochlor (69.41 %), atrazine (68.28 %), metolachlor (58.40 %), and oxadixyl (53.28 %). The overall removal rates of targeted pesticides in each HF-CWs ranged from 11 %‒57 %, excluding two HF-CWs showing increases in pesticides in treated effluent. Residues of malathion, phorate, and endosulfan in effluent had high-risks (RQ > 5). The pesticide concentration in effluent was mainly affected by that in influent (P = 0.042), and source control was the key to reducing risk. The main metabolic pathways of pesticide in HF-CWs were oxidation, with hydroxyl group to carbonyl group or to form sulfones, the second pathways by hydrolysis, aerobic condition was conducive to the transformation of pesticides. Sulfones were generally more toxic than the metabolites produced by hydrolytic pathways. The present study provides a reference on pesticides for the purification performance improvement, long-term maintenance, and practical sustainable application of field-scale HF-CWs.


Assuntos
Praguicidas , Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Águas Residuárias/química , Medição de Risco , Eliminação de Resíduos Líquidos , China
14.
Small Methods ; : e2400155, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781604

RESUMO

Microfluidic Paper-based Analytical Devices (µPADs) have emerged as a new class of microfluidic systems, offering numerous advantages over traditional microfluidic chips. These advantages include simplicity, cost-effectiveness, stability, storability, disposability, and portability. As a result, various designs for different types of assays are developed and investigated. In recent years, µPADs are combined with conventional detection methods to enable rapid on-site detection, providing results comparable to expensive and sophisticated large-scale testing methods that require more time and skilled personnel. The application of µPAD techniques is extensive in environmental quality control/analysis, clinical diagnosis, and food safety testing, paving the way for on-site real-time diagnosis as a promising future development. This review focuses on the recent research advancements in the design, fabrication, material selection, and detection methods of µPADs. It provides a comprehensive understanding of their principles of operation, applications, and future development prospects.

15.
Microb Ecol ; 66(1): 96-104, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23649297

RESUMO

The microbial community plays an essential role in the high productivity in mangrove wetlands. A proper understanding of the spatial variations of microbial communities will provide clues about the underline mechanisms that structure microbial groups and the isolation of bacterial strains of interest. In the present study, the diversity and composition of the bacterial community in sediments collected from four locations, namely mudflat, edge, bulk, and rhizosphere, within the Mai Po Ramsar Wetland in Hong Kong, SAR, China were compared using the barcoded Illumina paired-end sequencing technique. Rarefaction results showed that the bulk sediment inside the mature mangrove forest had the highest bacterial α-diversity, while the mudflat sediment without vegetation had the lowest. The comparison of ß-diversity using principal component analysis and principal coordinate analysis with UniFrac metrics both showed that the spatial effects on bacterial communities were significant. All sediment samples could be clustered into two major groups, inner (bulk and rhizosphere sediments collected inside the mangrove forest) and outer mangrove sediments (the sediments collected at the mudflat and the edge of the mangrove forest). With the linear discriminate analysis scores larger than 3, four phyla, namely Actinobacteria, Acidobacteria, Nitrospirae, and Verrucomicrobia, were enriched in the nutrient-rich inner mangrove sediments, while abundances of Proteobacteria and Deferribacterias were higher in outer mangrove sediments. The rhizosphere effect of mangrove plants was also significant, which had a lower α-diversity, a higher amount of Nitrospirae, and a lower abundance of Proteobacteria than the bulk sediment nearby.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/genética , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Biodiversidade , Ecossistema , Dados de Sequência Molecular , Filogenia , Rizosfera , Áreas Alagadas
16.
Mar Pollut Bull ; 193: 115178, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354831

RESUMO

Distribution of heavy metals (HMs) and antibiotics (ABs) in surface sediments of three habitats: mudflat, mangrove and gei wai (inter-tidal shrimp ponds), at Mai Po RAMSAR were determined with inductively coupled plasma and liquid chromatograph tandem - mass spectrometry, respectively. Eight HMs (Cr, As, Pb, Cd, Mn, Ni, Cu and Zn), and ten ABs (tetracyclines, quinolones, macrolides and sulphonamides) were detected in all habitats, with relatively lower concentration in gei wai. Ecological risk assessment based on PNEC revealed that HMs posed a higher ecological risk to microorganisms than ABs. All metals except Mn were above their respective threshold effect levels according to sediment quality guidelines, indicating their potential toxicity to benthos. The enrichment factor and geo-accumulation index on background values suggested sediments were moderately polluted by Zn, Cu and Cd, possibly from anthropogenic inputs. This study implies that HMs pollution must be prevented through proper regulation of agricultural and industrial discharge.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Metais Pesados/análise , China , Ecossistema
17.
Sci Total Environ ; 855: 158700, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113807

RESUMO

In mangrove wetlands, leaves make up a high proportion of the plant biomass and can accumulate heavy metals from contaminated sediment. Despite this, it is still unclear how heavy metal concentrations in leaves change as they develop and how metals in senescence leaves are recycled back into the mangrove ecosystems during decomposition. The present study aims to investigate the dynamics of six heavy metals (Cu, Zn, Cr, Ni, Cd, and Pb) in leaves of two common mangrove plants, Avicennia marina and Kandelia obovata, at different stages of development (young, mature, and senescent) and leaf litter decomposition (from 0 to 20 weeks). Based on litterbag experiments in a subtropical mangrove swamp, both plant species showed similar trends in alternations of the six heavy metals during leaf development, that was, decreased in Cu and Zn but increased in Pb, while Cr, Ni, and Cd remained steady. All heavy metals in litter gradually increased in concentration during decomposition. By the end of the 20-weeks decomposition, the concentrations of Cu, Zn, and Cd in decayed leaves were comparable to those in sediment, with Cu, Zn, and Cd at approximately 18, 75, and 0.2 mg·kg-1, respectively, while Cr (66 mg·kg-1), Ni (65 mg·kg-1), and Pb (55 mg·kg-1) were lower than those in sediment, indicating that metals were not retained in litter but recycled back to the sediment. Tannins in mangrove leaf litter might chelate heavy metals, affecting their migration and transformation of heavy metals in estuarine mangrove wetlands. The findings of our study provide insight into the interactions between toxic heavy metals and mangrove plant species during leaf development, representing the first example of how most metals would be retained in leaf litter during decomposition, thereby reducing their release to estuarine and marine ecosystems.


Assuntos
Avicennia , Metais Pesados , Rhizophoraceae , Poluentes Químicos da Água , Áreas Alagadas , Ecossistema , Sedimentos Geológicos , Cádmio , Chumbo , Monitoramento Ambiental , Metais Pesados/análise , Folhas de Planta/química , Plantas , Poluentes Químicos da Água/análise
18.
Appl Environ Microbiol ; 78(23): 8264-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001654

RESUMO

Sediment, a special realm in aquatic environments, has high microbial diversity. While there are numerous reports about the microbial community in marine sediment, freshwater and intertidal sediment communities have been overlooked. The present study determined millions of Illumina reads for a comparison of bacterial communities in freshwater, intertidal wetland, and marine sediments along Pearl River, China, using a technically consistent approach. Our results show that both taxon richness and evenness were the highest in freshwater sediment, medium in intertidal sediment, and lowest in marine sediment. The high number of sequences allowed the determination of a wide variety of bacterial lineages in all sediments for reliable statistical analyses. Principal component analysis showed that the three types of communities could be well separated from phylum to operational taxonomy unit (OTU) levels, and the OTUs from abundant to rare showed satisfactory resolutions. Statistical analysis (LEfSe) demonstrated that the freshwater sediment was enriched with Acidobacteria, Nitrospira, Verrucomicrobia, Alphaproteobacteria, and Betaproteobacteria. The intertidal sediment had a unique community with diverse primary producers (such as Chloroflexi, Bacillariophyta, Gammaproteobacteria, and Epsilonproteobacteria) as well as saprophytic microbes (such as Actinomycetales, Bacteroidetes, and Firmicutes). The marine sediment had a higher abundance of Gammaproteobacteria and Deltaproteobacteria, which were mainly involved in sulfate reduction in anaerobic conditions. These results are helpful for a systematic understanding of bacterial communities in natural sediment environments.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Áreas Alagadas , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Rios , Análise de Sequência de DNA
19.
J Exp Bot ; 63(7): 2619-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22268157

RESUMO

Root anatomy, radial oxygen loss (ROL), and tolerances to ferrous (Fe(2+)), sulphide (S(2-)), and zinc (Zn(2+)) ions were investigated in seedlings of eight species of mangrove, including three pioneer species, three rhizophoraceous and two landward semi-mangrove species. The results showed an interesting co-tolerance to Fe(2+), S(2-), and Zn(2+). The three rhizophoraceous species (Bruguiera gymnorrhiza, Kandelia obovata and Rhizophora stylosa), which possessed the thickest lignified exodermis and the 'tightest barrier' in ROL spatial pattern, consistently exhibited the highest tolerance to Fe(2+), S(2-), and Zn(2+). B. gymnorrhiza could directly reduce ROL by increasing lignification within the exodermis. Such an induced barrier to ROL is a probable defence response to prevent further invasion and spread of toxins within plants. The data also indicated that, in B. gymnorrhiza, Fe(2+) or S(2-), or both, induced a lignified exodermis that delayed the entry of Zn(2+) into the roots and thereby contributed to a higher tolerance to Zn(2+). This study provides new evidence of exclusive strategies of mangrove seedling roots in dealing with contaminations. The information is also important in the selection and cultivation of tolerant species for the bioremediation of contaminated waters or soils.


Assuntos
Compostos Ferrosos/metabolismo , Radical Hidroxila/metabolismo , Raízes de Plantas/metabolismo , Rhizophoraceae/metabolismo , Sulfetos/metabolismo , Zinco/metabolismo , Raízes de Plantas/anatomia & histologia , Rhizophoraceae/anatomia & histologia
20.
J Environ Sci (China) ; 24(9): 1670-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23520876

RESUMO

Brominated flame retardants have been widely used in industry. There is a rapid growing public concern for their availabilities in the environment. Advanced oxidation process (AOP) is a promising and efficient technology which may be used to remove emerging chemicals such as brominated flame retardants. This study aims at investigating optimal operational conditions for the removal of BDE-209 using nano-scaled titanium(IV) oxide. The residual PBDE congeners after photocatalytical degradation of BDE-209 by TiO2 were analysed by gas chromatography-mass spectrometry (GC-MS). It was found that the degradability of BDE-209 by TiO2 was attributed to its photocatalytic activity but not the small size of the particles. The half-life of removing BDE-209 by TiO2 was 3.05 days under visible light. Tetra- and penta-BDEs were the major degraded products of BDE-209. Optimum conditions for photocatalytical degradation of BDE-209 was found to be at pH 12 (93% +/- 1%), 5, 10, 20 mg/L (93.0% +/- 1.70%, 91.6% +/- 3.21%, 91.9% +/- 0.952%, respectively), respectively of humic acid and in the form of anatase/rutile TiO2 (82% +/- 3%). Hence, the efficiency of removing BDE-209 can be maximized while being cost effective at the said operating conditions.


Assuntos
Retardadores de Chama/análise , Éteres Difenil Halogenados/química , Titânio/química , Catálise , Poluentes Ambientais/química , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Nanotecnologia , Processos Fotoquímicos , Luz Solar , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA