Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(10): 15986-15997, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221452

RESUMO

The outstanding performance and facile processability turn two-dimensional materials (2DMs) into the most sought-after class of semiconductors for optoelectronics applications. Yet, significant progress has been made toward the hybrid integration of these materials on silicon photonics (SiPh) platforms for a wide range of mid-infrared (MIR) applications. However, realizing 2D materials with a strong optical response in the NIR-MIR and excellent air stability is still a long-term goal. Here, we report a waveguide integrated photodetector based on a novel 2D GeP. This material uniquely combines narrow and wide tunable bandgap energies (0.51-1.68 eV), offering a broadband operation from visible to MIR spectral range. In a significant advantage over graphene devices, hybrid Si/GeP waveguide photodetectors work under bias with a low dark current of few nano-amps and demonstrate excellent stability and reproducibility. Additionally, 65 nm thick GeP devices integrated on silicon waveguides exhibit a remarkable photoresponsivity of 0.54 A/W and attain high external quantum efficiency of ∼ 51.3% under 1310 nm light and at room temperature. Furthermore, a measured absorption coefficient of 1.54 ± 0.3 dB/µm at 1310 nm suggests the potential of 2D GeP as an alternative infrared material with broad optical tunability and dynamic stability suitable for advanced optoelectronic integration.

2.
Opt Express ; 29(24): 39395-39405, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809305

RESUMO

Recent theoretical studies proposed that two-dimensional (2D) GaGeTe crystals have promising high detection sensitivity at infrared wavelengths and can offer ultra-fast operation. This can be attributed to their small optical bandgap and high carrier mobility. However, experimental studies on GaGeTe in the infrared region are lacking and this exciting property has not been explored yet. In this work, we demonstrate a short-wavelength infrared (SWIR) photodetector based on a multilayer (ML) GaGeTe field-effect transistor (FET). Fabricated devices show a p-type behavior at room temperature with a hole field-effect mobility of 8.6 - 20 cm2 V-1s-1. Notably, under 1310 nm illumination, the photo responsivities and noise equivalent power of the detectors with 65 nm flake thickness can reach up to 57 A/W and 0.1 nW/Hz1/2, respectively, at a drain-source bias (Vds) = 2 V. The frequency responses of the photodetectors were also measured with a 1310 nm intensity-modulated light. Devices exhibit a response up to 100 MHz with a 3dB cut-off frequency of 0.9 MHz. Furthermore, we also tested the dependence of the device frequency response on the applied bias and gate voltages. These early experimental findings stimulate the potential use of multilayer GaGeTe for highly sensitive and ultrafast photodetection applications.

3.
Light Sci Appl ; 13(1): 92, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641636

RESUMO

Tunable optical materials are indispensable elements in modern optoelectronics, especially in integrated photonics circuits where precise control over the effective refractive index is essential for diverse applications. Two-dimensional materials like transition metal dichalcogenides (TMDs) and graphene exhibit remarkable optical responses to external stimuli. However, achieving distinctive modulation across short-wave infrared (SWIR) regions while enabling precise phase control at low signal loss within a compact footprint remains an ongoing challenge. In this work, we unveil the robust electro-refractive response of multilayer ferroionic two-dimensional CuCrP2S6 (CCPS) in the near-infrared wavelength range. By integrating CCPS into silicon photonics (SiPh) microring resonators (MRR), we enhance light-matter interaction and measurement sensitivity to minute phase and absorption variations. Results show that electrically driven Cu ions can tune the effective refractive index on the order of 2.8 × 10-3 RIU (refractive index unit) while preserving extinction ratios and resonance linewidth. Notably, these devices exhibit low optical losses and excellent modulation efficiency of 0.25 V.cm with a consistent blue shift in the resonance wavelengths among all devices for either polarity of the applied voltage. These results outperform earlier findings on phase shifters based on TMDs. Furthermore, our study demonstrates distinct variations in electro-optic tuning sensitivity when comparing transverse electric (TE) and transverse magnetic (TM) modes, revealing a polarization-dependent response that paves the way for diverse applications in light manipulation. The combined optoelectronic and ionotronic capabilities of two-terminal CCPS devices present extensive opportunities across several domains. Their potential applications range from phased arrays and optical switching to their use in environmental sensing and metrology, optical imaging systems, and neuromorphic systems in light-sensitive artificial synapses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA