Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39407504

RESUMO

The spin crossover complex Fe(phen)2(NCS)2 and its composite, Fe(phen)2(NCS)2, combined with the conducting polymer polyaniline (PANI) plus varying concentrations of iron magnetite (Fe3O4) nanoparticles were studied. A cooperative effect is evident from the hysteresis width in the plot of magnetic susceptibility multiplied by temperature versus temperature (χmT versus T) for Fe(phen)2(NCS)2 with PANI plus varying concentrations of Fe3O4 nanoparticles. The hysteresis width in the composites vary no more than 2 K with respect to the pristine Fe(phen)2(NCS)2 spin crossover crystallites despite the fact that there exists a high degree of miscibility of the Fe(phen)2(NCS)2 spin crossover complex with the PANI. The Fe3O4 nanoparticles in the Fe(phen)2(NCS)2 plus PANI composite tend to agglomerate at higher concentrations regardless of the spin state of Fe(phen)2(NCS)2. Of note is that the Fe3O4 nanoparticles are shown to be antiferromagnetically coupled with the Fe(phen)2(NCS)2 when Fe(phen)2(NCS)2 is in the high spin state.

2.
J Phys Condens Matter ; 36(28)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467066

RESUMO

In an effort to reconcile the various interpretations for the cation components of the 2p3/2observed in x-ray photoelectron spectroscopy (XPS) of several spinel oxide materials, the XPS spectra of both spinel alloy nanoparticles and crystalline thin films are compared. We observed that different components of the 2p3/2core level XPS spectra, of these inverse spinel thin films, are distinctly surface and bulk weighted, indicating surface-to-bulk core level shifts in the binding energies. Surface-to-bulk core level shifts in binding energies of Ni and Fe 2p3/2core levels of NiFe2O4thin film are observed in angle-resolved XPS. The ratio between surface-weighted components and bulk-weighted components of the Ni and Fe core levels shows appreciable dependency on photoemission angle, with respect to surface normal. XPS showed that the ferrite nanoparticles NixCo1-xFe2O4(x= 0.2, 0.5, 0.8, 1) resemble the surface of the NiFe2O4thin film. Surface-to-bulk core level shifts are also observed in CoFe2O4and NiCo2O4thin films but not as significantly as in NiFe2O4thin film. Estimates of surface stoichiometry of some spinel oxide nanoparticles and thin films suggested that the apportionment between cationic species present could be farther from expectations for thin films as compared to what is seen with nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA