RESUMO
PURPOSE OF REVIEW: This review aims to summarize the most recently published literature highlighting the potential of pharmacological inhibition of ANGPTL3 in treating patients suffering from dyslipidemias. The rational for this strategy will be discussed considering evidence describing the role of ANGPTL3 in lipid metabolism and the consequences of its deficiency in humans. RECENT FINDINGS: Recent trials have demonstrated the efficacy and safety of ANGPTL3 inhibition in treating homozygous familial hypercholesterolemia even in those patients carrying biallelic null/null variants, thus supporting the notion that the LDL-lowering effect of ANGPLT3 inhibition is LDLR-independent. The use of ANGPTL3 inhibition strategies has expanded its indications in hypertrygliceridemic patients with functional lipoprotein lipase activity. Contemporarily, the pharmacological research is exploring novel approaches to ANGPTL3 inhibition such as the use of a small interfering RNA targeting the ANGPTL3 transcript in the liver, a protein-based vaccine against ANGPTL3, and a CRISP-Cas-9 method for a liver-selective knock-out of ANGPTL3 gene. First, we will describe the molecular function of ANGPTL3 in lipoprotein metabolism. Then, we will revise the clinical characteristics of individuals carrying loss-of-function mutations of ANGPTL3, a rare condition known as familial hypobetalipoproteinemia type 2 (FHBL2) that represents a unique human model of ANGPTL3 deficiency. Finally, we will examine the lipid-lowering potential of pharmacological inhibition of ANGPTL3 based on the results of clinical trials employing Evinacumab, the first approved fully humanized monoclonal antibody against ANGPTL3. The future perspectives for ANGPTL3 inhibition will also be revised.
Assuntos
Proteína 3 Semelhante a Angiopoietina , Metabolismo dos Lipídeos , Humanos , Proteínas Semelhantes a Angiopoietina , Mutação , Fígado/metabolismoRESUMO
Cancer cachexia displays a complex nature in which systemic inflammation, impaired energy metabolism, loss of muscle and adipose tissues result in unintentional body weight loss. Cachectic patients have a poor prognosis and the presence of cachexia reduces the tolerability of chemo/radio-therapy treatments and it is frequently the primary cause of death in advanced cancer patients. Early detection of this condition could make treatments more effective. However, early diagnostic biomarkers of cachexia are currently lacking. In recent years, although solid biopsy still remains the "gold standard" for diagnosis of cancer, liquid biopsy is gaining increasing interest as a source of easily accessible potential biomarkers. Moreover, the growing interest in circulating microRNAs (miRNAs), has made these molecules attractive for the diagnosis of several diseases, including cancer. Some muscle-derived circulating miRNA might play a pivotal role in the onset/progression of cancer cachexia. This topic is of great interest since circulating miRNAs might be easily detectable by means of liquid biopsies and might allow an early diagnosis of this syndrome. We here summarize the current knowledge on circulating muscular miRNAs involved in muscle atrophy, since they might represent easily accessible and promising biomarkers of cachexia.
Assuntos
Caquexia/diagnóstico , Caquexia/genética , MicroRNAs/genética , Tecido Adiposo/metabolismo , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , MicroRNA Circulante/análise , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Metabolismo Energético/fisiologia , Humanos , Inflamação/patologia , Biópsia Líquida/métodos , MicroRNAs/análise , MicroRNAs/sangue , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Neoplasias/complicações , Neoplasias/genética , Transdução de Sinais/genética , Redução de Peso/genéticaRESUMO
Background: Adipose tissue (AT) wasting in cancer is an early catabolic event with negative impact on outcomes. Circulating miRNAs may promote body weight loss and cachexia. We measured circulating miRNAs linked to AT alterations and compared their levels between i) gastrointestinal (GI) cancer patients and controls, ii) cachectic and non-cachectic cancer patients, and iii) according to adiposity level and its distribution. Methods: Patients with GI cancer and subjects with benign diseases as controls were considered. Cachexia was assessed and adiposity evaluated by CT-scan for subcutaneous AT area (SAT), visceral AT area and the total AT area (TAT). MiRNAs involved were measured in plasma by RT-qPCR. Results: 37 naïve GI cancer patients and 14 controls were enrolled. Patients with cachexia presented with lower SAT compared to non-cachectic (p < 0.05). In cancer patients, we found higher levels of miR-26a, miR-128, miR-155 and miR-181a vs. controls (p < 0.05). Cancer patients with BMI < 25 kg/m2 showed higher levels of miR-26a vs. those with BMI ≥ 25 (p = 0.035). MiR-26a and miR-181a were higher in cachectic and non-cachectic vs. controls (p < 0.05). Differences between cachectic and controls were confirmed for miR-155 (p < 0.001) but not between non-cachectic vs. control (p = 0.072). MiR-155 was higher in cachectic patients with low TAT vs. those without cachexia and high TAT (p = 0.036). Conclusion: Our data confirm a modulation of specific and different miRNAs involved in AT metabolism in cancer and cachexia. MiR-155 levels were higher in patients presenting with cachexia and low adiposity with implications in the pathogenic mechanisms and clinical consequences of GI cancer patients.
RESUMO
BACKGROUND: Adipose tissue metabolism may be impaired in patients with cancer. In particular, increased lipolysis was described in cancer-promoting adipose tissue atrophy. For this reason, we assessed the expression of the lipolysis-associated genes and proteins in subcutaneous adipose tissue (SAT) of gastrointestinal (GI) cancer patients compared to controls to verify their involvement in cancer, among different types of GI cancers, and in cachexia. METHODS: We considered patients with GI cancer (gastric, pancreatic, and colorectal) at their first diagnosis, with/without cachexia, and controls with benign diseases. We collected SAT and total RNA was extracted and ATGL, HSL, PPARα, and MCP1 were analyzed by qRT-PCR. Western blot was performed to evaluate CGI-58, PLIN1 and PLIN5. RESULTS: We found higher expression of ATGL and HSL in GI cancer patients with respect to controls (p ≤ 0.008) and a trend of increase for PPARα (p = 0.055). We found an upregulation of ATGL in GI cancer patients with cachexia (p = 0.033) and without cachexia (p = 0.017) vs controls. HSL was higher in patients with cachexia (p = 0.020) and without cachexia (p = 0.021), compared to controls. ATGL was upregulated in gastric cancer vs controls (p = 0.014) and higher HSL was found in gastric (p = 0.008) and in pancreatic cancer (p = 0.033) vs controls. At the protein level, we found higher CGI-58 in cancer vs controls (p = 0.019) and in cachectic vs controls (p = 0.029), as well as in gastric cancer vs controls (p = 0.027). CONCLUSION: In our cohort of GI cancer patients, we found a modulation in the expression of genes and proteins involved in lipolysis, and differences were interestingly detected according to cancer type.
RESUMO
BACKGROUND & AIMS: Anorexia is a disabling symptom in cancer and we aimed at investigating the role of changes in gene expression in lung cancer patients presenting with anorexia. METHODS: Genome-wide transcriptomic profiling was assessed in PBMCs RNA from newly diagnosed lung cancer patients and in a control group. RT-qPCR was used for selected genes. RESULTS: RNA-Seq analysis revealed among groups a large number of differentially expressed genes mainly implicated in immune system regulation, oxidative stress and cytokine-mediated inflammation signaling pathways. In particular, we identified a total of 983 DEGs (843 up-regulated; 140 down-regulated) in anorexic cancer compared to controls. A selected number of DEGs including ADAM8, SMAD4, CCR4 and CLU were differentially expressed within cancer group according to the presence/absence of anorexia. In terms of RT-qPCR, ADAM8 was less expressed in cancer patients than controls (p < 0.001), and in anorexic patients vs controls (p = 0.001). The expression of SMAD4 was lower in cancer vs controls (p = 0.005), and in anorexic patients vs controls (p = 0.009). We observed lower CCR4 expression in both anorexic and non-anorexic vs control (p = 0.004, p = 0.011, respectively) and a similar trend was present for CLU. CONCLUSIONS: Our data shed new light on the role of specific genes and their associated molecular pathways as potential key mechanisms for the development of anorexia and may represent a novel landmark for understanding the complex pathophysiology of impaired appetite in cancer.
Assuntos
Anorexia , Neoplasias Pulmonares , Humanos , Anorexia/genética , Leucócitos Mononucleares , Neoplasias Pulmonares/genética , Perfilação da Expressão Gênica , Expressão Gênica , Proteínas de Membrana , Proteínas ADAMRESUMO
BACKGROUND: ANGPTL3 stimulates lipolysis in adipocytes, but the underlying molecular mechanism is yet unknown. The C-terminal fibrinogen-like domain of ANGPTL3 (ANGPTL3-Fld) activates the AKT pathway in endothelial cells. Hence, we evaluated whether ANGPTL3-Fld stimulates lipolysis in adipocytes through the MAPK kinase pathway. MATERIALS AND METHODS: 3T3-L1 adipocytes were treated with isoproterenol (ISO), ANGPTL3-Fld, or both. Lipolysis was evaluated through the release of free fatty acids (FFAs) in the culture medium. The activation status of intracellular kinases was evaluated with and without the inhibition of the BRAF-ERK arm of the MAPK pathway. RESULTS: ANGPTL3-Fld alone was not able to activate lipolysis, while the combination of ANGPTL3-Fld and ISO determined a 10-fold enrichment of the FFA concentration in the culture medium with an incremental effect (twofold) when compared with ISO alone. ANGPTL3-Fld alone inhibited hormone-sensitive lipase (HSL), whereas the treatment with ISO induced the activation of HSL. The net balance of ANGPTL3-Fld and ISO cotreatment resulted in HSL activation. The results indicate that ANGPTL3-Fld generated an intracellular activation signal involving the MAPK-ERK pathway, possibly through the PDGFRß-PLCγ-AMPK axis. CONCLUSION: ANGPTL3-Fld appears to act as a facilitator of lipolysis in adipocytes, and this effect was driven by a signal mediated by a pathway that is different from the canonical ß-adrenergic stimulus.
Assuntos
Proteína 3 Semelhante a Angiopoietina , Lipólise , Sistema de Sinalização das MAP Quinases , Células 3T3-L1 , Proteína 3 Semelhante a Angiopoietina/metabolismo , Animais , Células Endoteliais/metabolismo , Ácidos Graxos não Esterificados , Fibrinogênio/metabolismo , Isoproterenol/farmacologia , Camundongos , Esterol Esterase/metabolismoRESUMO
We assessed the molecular phenotype of the browning of white adipose tissue in newly diagnosed cancer patients and controls undergoing surgery for gastrointestinal tumors and for non-malignant diseases, respectively. We collected subcutaneous adipose tissue (SAT) samples and using RT-PCR, we analyzed the expression of markers of browning and using Western blot the protein levels of UCP1 and PGC1α. The Ucp1 mRNA levels were lower in cancer patients vs. controls (p = 0.01), whereas Cidea and Tmem26 mRNA levels were higher in cancer patients. We found higher PGC1α protein levels in patients vs. controls, while no differences were seen for UCP1. The Ucp1 expression was lower in cachectic and non-cachectic patients vs. controls, whereas Cidea expression was higher in cachectic and non-cachectic patients vs. controls. Pgc1α mRNA levels were higher in cachectic vs. non-cachectic patients (p = 0.03) vs. controls (p = 0.016). According to type of tumors, we did not observe differences in Cidea expression, whereas Pgc1α was higher in pancreatic cancer vs. colorectal and vs. controls. We observed the lower expression of Ucp1 in pancreatic and colorectal cancer vs. controls. We documented higher UCP1 protein levels in pancreatic cancer patients vs. colorectal (p = 0.002) and vs. controls (p = 0.031). PGC1α protein levels were higher in pancreatic cancer patients vs. controls. Different markers of the browning of SAT are modulated, and pancreatic cancer showed changes in UCP1 and PGC1α; PGC1α was highly expressed in cachectic patients, with clinical implications that should be further clarified.