Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(1): e0258023, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37991375

RESUMO

IMPORTANCE: The gut microbiome-brain communication signaling has emerged in recent years as a novel target for intervention with the potential to ameliorate some conditions associated with the central nervous system. Hence, probiotics with capacity to produce neurotransmitters, for instance, have come up as appealing alternatives to treat disorders associated with disbalanced neurotransmitters. Herein, we further deep into the effects of administering a gamma-aminobutyric acid (GABA)-producing Bifidobacterium strain, previously demonstrated to contribute to reduce serum glutamate levels, in the gut microbiome composition and metabolic activity in a mouse model. Our results demonstrate that the GABA-producing strain administration results in a specific pattern of gut microbiota modulation, different from the one observed in animals receiving non-GABA-producing strains. This opens new avenues to delineate the specific mechanisms by which IPLA60004 administration contributes to reducing serum glutamate levels and to ascertain whether this effect could exert health benefits in patients of diseases associated with high-glutamate serum concentrations.


Assuntos
Bifidobacterium adolescentis , Microbioma Gastrointestinal , Probióticos , Humanos , Camundongos , Animais , Bifidobacterium adolescentis/metabolismo , Microbioma Gastrointestinal/fisiologia , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia , Glutamatos/metabolismo , Glutamatos/farmacologia , Administração Oral , Neurotransmissores/metabolismo
2.
Food Res Int ; 171: 113009, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330847

RESUMO

There is an increasing interest in producing foods enriched in gamma-aminobutyric acid (GABA), due to their purported health promoting attributes. GABA is the main inhibitor neurotransmitter of the central nervous system, and several microbial species are capable to produce it through decarboxylation of glutamate. Among them, several lactic acid bacteria species have been previously investigated as an appealing alternative to produce GABA enriched foods via microbial fermentation. In this work we report for the first time an investigation into the possibility of utilizing high GABA-producing Bifidobacterium adolescentis strains as a mean to produce fermented probiotic milks naturally enriched in GABA. To this end, in silico and in vitro analyses were conducted in a collection of GABA-producing B. adolescentis strains, with the main goal to scrutinize their metabolic and safety traits, including antibiotic resistance patterns, as well as their technological robustness and performance to survive a simulated gastrointestinal passage. One of the strains, IPLA60004, exhibited better survival to lyophilization and cold storage (for up to 4 weeks at 4 °C), as well as survival to gastrointestinal passage, as compared to the other strains under investigation. Besides, the elaboration of milk drinks fermented with this strain, yielded products with the highest GABA concentration and viable bifidobacterial cell counts, achieving conversion rates of the precursor, monosodium glutamate (GMS), up to 70 %. To our knowledge, this is the first report on the elaboration of GABA enriched milks through fermentation with B. adolescentis.


Assuntos
Bifidobacterium adolescentis , Leite , Animais , Leite/microbiologia , Bifidobacterium adolescentis/metabolismo , Trato Gastrointestinal/metabolismo , Glutamato de Sódio , Ácido gama-Aminobutírico
3.
Microbiol Spectr ; 11(4): e0506322, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37347184

RESUMO

Several studies have described the contribution of glutamate-transforming microbiota to the development of chronic ailments. For instance, the blood concentration of glutamate is higher in some patients with fibromyalgia, chronic fatigue, and pain. Taking advantage of a naturally occurring strain of Bifidobacterium that is able to transform glutamate in γ-aminobutyric caid (GABA), B. adolescentis IPLA60004, we designed a placebo-controlled intervention to test if the presence of this GABA-producing bifidobacteria in mice was able to impact the concentration of glutamate in the blood in comparison with the administration of other strain of the same species lacking the genes of the glutamate decarboxylase (gad) cluster. Animals were fed every day with 8 log CFU of bacteria in a sterilized milk vehicle for 14 days. Samples from feces and blood were collected during this period, and afterwards animals were sacrificed, tissues were taken from different organs, and the levels of different metabolites were analyzed by ultrahigh-performance liquid chromatography coupled to mass spectrometry. The results showed that both bacterial strains orally administered survived in the fecal content, and animals fed B. adolescentis IPLA60004 showed a significant reduction of their glutamate serum concentration, while a nonsignificant decrease was observed for animals fed a reference strain, B. adolescentis LGM10502. The variations observed in GABA were influenced by the gender of the animals, and no significant changes were observed in different tissues of the brain. These results suggest that orally administered GABA-producing probiotics could reduce the glutamate concentration in blood, opening a case for a clinical trial study in chronic disease patients. IMPORTANCE This work presents the results of a trial using mice as a model that were fed with a bacterial strain of the species B. adolescentis, which possesses different active genes capable of degrading glutamate and converting it into GABA. Indeed, the bacterium is able to survive the passage through the gastric tract and, more importantly, the animals reduce over time the concentration of glutamate in their blood. The importance of this result lies in the fact that several chronic ailments, such as fibromyalgia, are characterized by an increase in glutamate. Our results indicate that an oral diet with this probiotic-type bacteria could reduce the concentration of glutamate and, therefore, reduce the symptoms associated with the excess of this neurotransmitter.


Assuntos
Bifidobacterium adolescentis , Fibromialgia , Probióticos , Camundongos , Animais , Bifidobacterium adolescentis/metabolismo , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Bifidobacterium/genética , Bifidobacterium/metabolismo , Fezes/microbiologia , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo
4.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836123

RESUMO

Here, we present the first in silico and in vitro evidence of Aß-like peptides released from meaningful members of the gut microbiome (mostly from the Clostridiales order). Two peptides with high homology to the human Aß peptide domain were synthesized and tested in vitro in a neuron cell-line model. Gene expression profile analysis showed that one of them induced whole gene pathways related to AD, opening the way to translational approaches to assess whether gut microbiota-derived peptides might be implicated in the neurodegenerative processes related to AD. This exploratory work opens the path to new approaches for understanding the relationship between the gut microbiome and the triggering of potential molecular events leading to AD. As microbiota can be modified using diet, tools for precise nutritional intervention or targeted microbiota modification in animal models might help us to understand the individual roles of gut bacteria releasing Aß-like peptides and therefore their contribution to this progressive disease.


Assuntos
Doença de Alzheimer/microbiologia , Peptídeos beta-Amiloides/metabolismo , Microbioma Gastrointestinal/genética , Neurônios/microbiologia , Animais , Linhagem Celular , Humanos , Transdução de Sinais/genética , Transcriptoma
5.
Microorganisms ; 8(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413974

RESUMO

Bifidobacteria are among the most abundant microorganisms inhabiting the intestine of humans and many animals. Within the genus Bifidobacterium, several beneficial effects have been attributed to strains belonging to the subspecies Bifidobacterium longum subsp. longum and Bifidobacterium longum subsp. infantis, which are often found in infants and adults. The increasing numbers of sequenced genomes belonging to these two subspecies, and the availability of novel computational tools focused on predicting glycolytic abilities, with the aim of understanding the capabilities of degrading specific carbohydrates, allowed us to depict the potential glycoside hydrolases (GH) of these bacteria, with a focus on those GH profiles that differ in the two subspecies. We performed an in silico examination of 188 sequenced B. longum genomes and depicted the commonly present and strain-specific GHs and GH families among representatives of this species. Additionally, GH profiling, genome-based and 16S rRNA-based clustering analyses showed that the subspecies assignment of some strains does not properly match with their genetic background. Furthermore, the analysis of the potential GH component allowed the distinction of clear GH patterns. Some of the GH activities, and their link with the two subspecies under study, are further discussed. Overall, our in silico analysis poses some questions about the suitability of considering the GH activities of B. longum subsp. longum and B. longum subsp. infantis to gain insight into the characterization and classification of these two subspecies with probiotic interest.

6.
Sci Rep ; 10(1): 14112, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839473

RESUMO

Gamma aminobutyric acid (GABA) is the principal inhibitory neurotransmitter playing a key role in anxiety and depression disorders in mammals. Recent studies revealed that members of the gut microbiota are able to produce GABA modulating the gut-brain axis response. Among members of the human gut microbiota, bifidobacteria are well known to establish many metabolic and physiologic interactions with the host. In this study, we performed genome analyses of more than 1,000 bifidobacterial strains publicly available revealing that Bifidobacterium adolescentis taxon might represent a model GABA producer in human gastrointestinal tract. Moreover, the in silico screening of human/animal metagenomic datasets showed an intriguing association/correlation between B. adolescentis load and mental disorders such as depression and anxiety. Interestingly, in vitro screening of 82 B. adolescentis strains allowed identifying two high GABA producers, i.e. B. adolescentis PRL2019 and B. adolescentis HD17T2H, which were employed in an in vivo trial in rats. Feeding Groningen rats with a supplementation of B. adolescentis strains, confirmed the ability of these microorganisms to stimulate the in vivo production of GABA highlighting their potential implication in gut-brain axis interactions.


Assuntos
Bifidobacterium adolescentis/genética , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Ácido gama-Aminobutírico/genética , Animais , Ansiedade/fisiopatologia , Carga Bacteriana , Bifidobacterium adolescentis/classificação , Bifidobacterium adolescentis/metabolismo , Depressão/fisiopatologia , Humanos , Masculino , Modelos Animais , Probióticos/administração & dosagem , Ratos , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA