Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123932, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583796

RESUMO

By analyzing environmental and meteorological monitoring data over recent years of 2015-2022, the Twain-Hu Basin (THB) in central China was identified as a regional O3 pollution center over China with the highest increasing trend at 1.10 %⸱yr-1 in interannual variations of O3 concentrations with deteriorating O3 pollution over recent years. We explored the spatiotemporal variations in O3 pollution in the THB with ozone suppression (OS) under high air temperature over metropolitan, small urban, and mountainous areas. The bipolarized interannual trends in interannual O3 variations in urban and mountainous areas over central China were characterized with the increasing and decreasing 90th percentiles of the daily maximum 8-h (MDA8-90) O3 concentrations respectively in polluted urban areas and clean mountainous areas over recent eight years. The changes of the near-surface O3 concentrations with air temperature exhibited the inflection points of OS from increasing to decreasing O3 at air temperature of 30.5 °C in mountainous areas, 32.5 °C in small urban areas, and 34.5 °C in metropolitan areas, and the intensity of OS was estimated in the ranking with mountainous areas (-2.30 µg⸱m-3⸱°C-1) > small urban areas (-1.96 µg⸱m-3⸱°C-1) > metropolitan areas (-1.54 µg⸱m-3⸱°C-1), indicating that the OS was more significant over the lower-O3 mountainous areas. This study has implications for understanding O3 pollution variations with the meteorological drivers.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Ozônio , Ozônio/análise , China , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Temperatura Alta , Temperatura , Cidades
2.
Sci Total Environ ; 858(Pt 2): 159830, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343804

RESUMO

Regional PM2.5 transport is a crucial factor affecting air quality, and the meteorological mechanism in the atmospheric boundary layer (ABL) has not been fully understood over the receptor region in the regional transport of air pollutants. Based on the intensive vertical measurements of air pollutants and meteorology in the ABL during a transport-induced heavy air pollution event in Xiangyang, an urban site over a receptor region in central China, we investigated the meteorological mechanism in vertical PM2.5 changes in the ABL for heavy air pollution over the receptor region. Driven by northerly winds, regional PM2.5 transport was built from upstream northern China to downstream central China, where the observed ABL structures were unstable throughout the air pollution event. We assessed the ABL structures with meteorological and PM2.5 profiles at growth, maintenance, and dissipation stages, and elucidated the mechanism of regional PM2.5 transport inducing air pollution over the receptor region with the contribution of thermal and mechanical factors. The regional PM2.5 transport was concentrated in the upper ABL over the downwind receptor region with high PM2.5 concentrations at altitudes of 600-800 m, where the transported PM2.5 peaks were downwards mixed by vertical wind shear, forming the vertical PM2.5 transport from the upper ABL to near-surface in the growth stage; the weakened winds and less unstable structures in the ABL favored the sustained pollution with slight vertical PM2.5 changes in the maintenance stage, which was dominated by thermal factors with 87 % contribution; the removal of PM2.5 was triggered by increasing winds from the upper ABL, activating the dissipation of heavy PM2.5 pollution with the mechanical effect accounting for 60 % in the dissipation stage. These findings could improve our understanding of ABL's influence on air pollution over the receptor region with implications for the regional transport of air pollutants in environmental changes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Meteorologia , Material Particulado/análise , Monitoramento Ambiental , Poluição do Ar/análise , Poluentes Atmosféricos/análise , China , Estações do Ano
3.
Sci Total Environ ; 839: 156264, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644388

RESUMO

The Sichuan Basin (SCB), to the east of the Tibetan Plateau (TP), experiences severe ozone (O3) pollution. Unfavorable atmospheric diffusion conditions are considered the main causes of heavy air pollution over the basin. However, the meteorological impact of thermally driven mountain-plains solenoid (MPS) between the TP and SCB on O3 pollution has not been reported. Here we show the MPS driving the diurnal O3 changes in the atmospheric boundary layer over the SCB based on surface and high-resolution vertical observations, ERA5 reanalysis data, and the WRF-Chem model. The MPS shifts between upslope and easterly flows along the eastern slope of the TP and SCB during the day and downslope westerly flows to the western SCB at night. The daytime MPS flows drive the westward transport of O3-rich air mass in the atmospheric boundary layer from the polluted SCB and accumulate high O3 levels from the western edge of the SCB to the eastern slope of TP, subsequently aggravating O3 pollution in this region. After sunset, the MPS drainage flows carry air containing elevated O3 eastward downslope along the eastern slope of the TP into the nocturnal residual layer, enhancing the O3 concentrations aloft over the western SCB. The high-level O3 in the residual layer is transported downstream by nocturnal prevailing winds and contributes significantly to the next-day surface O3 buildup in the downwind region through daytime vertical mixing (~30 µg m-3 h-1). The present study reveals a transport mechanism driven by the MPS with coupling diurnal changes in the atmospheric boundary layer, which redistributes O3 over the basin and exacerbates O3 pollution along the western edge of the basin. This study has important implications for understanding meteorological drivers on atmospheric environment underlying the complex terrain.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Ozônio/análise , Estações do Ano
4.
Huan Jing Ke Xue ; 38(2): 476-484, 2017 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964502

RESUMO

Based on the MODIS-Aqua aerosol optical depth (AOD) products from 2003 to 2014, Nighttime Lights Time data from DMSP satellites and basic meteorological data, the AOD spatial distributions of interannual and seasonal variations over three northeastern provinces of China(Liaoning, Jilin, Heilongjiang) were analyzed. It was found that there was a northeast-southwest area of high annual average AOD composed of Dalian, Shenyang, Changchun, Harbin and other cities, the 12-year average AOD value was 0.4-0.8. The low AOD occurred in the eastern and northern areas of the three northeastern provinces of China, where the forest-covering rate was high, and the 12-year average AOD value was less than 0.3. The seasonal variations of annual average AOD showed an increasing trend from spring to summer, then decreased in autumn and increased again in winter. The interannual variations of AOD over three northeastern provinces of China showed a decreasing trend in most areas, but the increasing trend occurred in the northeast-southwest region with the axis formed by Shenyang, Changchun and Harbin, revealing the polarization in recent 10 years over three northeastern provinces of China. In addition, spatial distribution of annual average AOD over three northeastern provinces of China in the years of strong and weak Western North Pacific Summer Monsoon was studied. Affected by the surface wind field, annual average AOD in weak monsoon years was higher than that in strong monsoon years.

5.
Sci Total Environ ; 538: 583-90, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26318811

RESUMO

To explore the variations in atmospheric environment over mountainous areas, measurements were made from an intensive field observation at the summit of Mt. Huang (30.13°N, 118.15°E, 1841m above sea level), a rural site located in East China, from June to August 2011. The measurements revealed a diurnal change of surface O3 with low concentrations during the daytime and high concentrations during the nighttime. The causes of diurnal O3 variations over the mountain peak in East China were investigated by using a fairly comprehensive WRF-Chem and HYSPLIT4 modeling approach with observational analysis. By varying model inputs and comparing the results to a baseline modeling and actual air quality observations, it is found that nearby ozone urban/anthropogenic emission sources were contributing to a nighttime increase in mountaintop ozone levels due to a regional transport lag and residual layer effects. Positive correlation of measured O3 and CO concentrations suggested that O3 was associated with anthropogenic emissions. Sensitivity modeling experiments indicated that local anthropogenic emissions had little impact on the diurnal pattern of O3. The diurnal pattern of O3 was mainly influenced by regional O3 transport from the surrounding urban areas located 100-150km away from the summit, with a lag time of 10h for transport.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Ozônio/análise , China , Meio Ambiente , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA