Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Phys Chem Chem Phys ; 25(15): 10599-10603, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36994919

RESUMO

Methylation is one of the crucial steps for drug discovery, organic synthesis, and catalysis. Despite being a versatile and well-known chemical reaction, its chemoselectivity has not been well addressed. In this paper, we reported a thorough experimental and computational investigation of the selective N-methylation of N-heterocyclic compounds, mainly quinolines and pyridines. These reactions were conducted in a base-free manner under ambient conditions using iodomethane as the methylating reagent, exhibited good chemoselectivity, and were tolerant of other amine, carboxyl, or hydroxyl functional groups without needing protection. To this end, 13 compounds were synthesized as a proof-of-concept and 7 crystal structures were obtained. However, the chemoselectivity failed in the presence of a thiol group. Detailed quantum chemical calculations provided insights into the N-methylation mechanism and its selectivity and demonstrated that the isomerization induced by ground-state intramolecular proton transfer (GSIPT) in the presence of a thiol group inhibits the N-methylation.

2.
Angew Chem Int Ed Engl ; 62(39): e202306061, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37246144

RESUMO

Single-molecule localization microscopy (SMLM) has found extensive applications in various fields of biology and chemistry. As a vital component of SMLM, fluorophores play an essential role in obtaining super-resolution fluorescence images. Recent research on spontaneously blinking fluorophores has greatly simplified the experimental setups and extended the imaging duration of SMLM. To support this crucial development, this review provides a comprehensive overview of the development of spontaneously blinking rhodamines from 2014 to 2023, as well as the key mechanistic aspects of intramolecular spirocyclization reactions. We hope that by offering insightful design guidelines, this review will contribute to accelerating the advancement of super-resolution imaging technologies.

3.
Phys Chem Chem Phys ; 24(26): 15937-15944, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727090

RESUMO

Long-wavelength fluorescent proteins (LWFPs) and LWFP-based sensors are indispensable tools for bioimaging and biosensing applications. However, it remains challenging to develop LWFPs with outstanding brightness and/or sensitivities, largely due to the lack of simple and effective molecular design strategies. Herein, we rationalized the molecular origins of a multi-donor strategy that affords significant bathochromic shifts and large Stokes shifts with minimal structural changes in the resulting protein fluorophores. We analyzed three key factors that affect the spectral properties of these fluorophores, including the (1) substituent position, (2) electron-donating strength, and (3) number of electron-donating groups. We further demonstrated that this simple design strategy is generalizable to various fluorophore families. We expect that this work can provide rational guidelines for developing fluorescent proteins (and small-molecule fluorophores) with long emission wavelengths and large Stokes shifts.


Assuntos
Elétrons , Corantes Fluorescentes , Corantes Fluorescentes/química , Humanos
4.
Phys Chem Chem Phys ; 24(7): 4635-4643, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35133365

RESUMO

The triphenylamine (TPA) group is an important molecular fragment that has been widely used to design efficient hole-transporting materials (HTMs). However, the applicability of triphenylamine derived HTMs that exhibit low hole mobility and conductivity in commercial perovskite solar cells (PSCs) has been limited. To aid in the development of highly desirable TPA-based HTMs, we utilized a combination of density functional theory (DFT) and Marcus electron transfer theory to investigate the effect of heteroatoms, including boron, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, germanium, arsenic, and selenium atoms, on the energy levels, optical properties, hole mobility, and interfacial charge transfer behaviors of a series of HTMs. Our computational results revealed that compared with the commonly referenced OMeTPA-TPA molecule, most heteroatoms lead to deeper energy levels. Furthermore, these heteroatom-based HTMs exhibit improved hole mobility due to their more rigid molecular structures. More significantly, these heteroatoms also enhance the interface interaction in perovskite/HTM systems, resulting in a larger internal electric field. Our work represents a new approach that aids in the understanding and designing of more efficient and better performing HTMs, which we hope can be used as a platform to propel the developmental commercialization of these highly desirable PSCs.

5.
Chem Soc Rev ; 50(22): 12656-12678, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34633008

RESUMO

The twisted intramolecular charge transfer (TICT) mechanism has guided the development of numerous bright and sensitive fluorophores. This review briefly overviews the history of establishing the TICT mechanism, and systematically summarizes the molecular design strategies in modulating the TICT tendency of various organic fluorophores towards different applications, along with key milestone studies and representative examples. Additionally, we also succinctly review the twisted intramolecular charge shuttle (TICS) and twists during photoinduced electron transfer (PET), and compare their similarities and differences with TICT, with emphasis on understanding the structure-property relationships between the twisted geometries and how they can directly affect the fluorescence of the molecules. Such structure-property relationships presented herein will greatly aid the rational development of fluorophores that involve molecular twisting in the excited state.

6.
Angew Chem Int Ed Engl ; 61(41): e202211106, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35980221

RESUMO

Achieving wide-range tunable emission colors, especially in the solid state of single-fluorophore materials, remains a significant challenge. Herein, we report a molecular design strategy that affords wide-range excitation-dependent emissions spanning over ≈230 nm in crystalline states. Under the donor-π-acceptor configuration, we judiciously choose a rotatable acceptor fragment, o-carborane, to enrich conformational diversities in the crystalline state and generate conformation-dependent multicolor emissions. We further show that this molecular platform is generalizable in creating crystalline materials with multicolor emissions. Based on these materials, a high-capacity information storage device and a finite-state machine were fabricated to showcase multicolor displays and information storage.

7.
Angew Chem Int Ed Engl ; 61(14): e202200546, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35107202

RESUMO

Although doping can induce room-temperature phosphorescence (RTP) in heavy-atom free organic systems, it is often challenging to match the host and guest components to achieve efficient intersystem crossing for activating RTP. In this work, we developed a simple descriptor ΔE to predict host molecules for matching the guest RTP emitters, based on the intersystem crossing via higher excited states (ISCHES) mechanism. This descriptor successfully predicted five commercially available host components to pair with naphthalimide (NA) and naphtho[2,3-c]furan-1,3-dione (2,3-NA) emitters with a high accuracy of 83 %. The yielded pairs exhibited bright yellow and green RTP with the quantum efficiency up to 0.4 and lifetime up to 1.67 s, respectively. Using these RTP pairs, we successfully achieved multi-layer message encryption. The ΔE descriptor could provide an efficient way for developing doping-induced RTP materials.

8.
J Am Chem Soc ; 143(31): 12345-12354, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323480

RESUMO

Heavy-atom-based photosensitizers usually exhibit shortened triplet-state lifetimes, which is not ideal for hypoxic tumor photodynamic therapy. Although several heavy-atom-free photosensitizers possess long triplet-state lifetimes, the clinical applicability is limited by their short excitation wavelengths, poor photon capture abilities, and intrinsically hydrophobic structures. Herein we developed a novel NIR heavy-atom-free photosensitizer design strategy by introducing sterically bulky and electron-rich moieties at the meso position of the pentamethine cyanine (Cy5) skeleton, which simultaneously enhanced intersystem crossing (ISC) and prolonged excited-state lifetime. We found that the 1O2 generation ability is directly correlated to the electron-donating ability of the meso substituent in cyanine, and the excited-state lifetime was simultaneously much elongated when the substituents were anthracene derivatives substituted at the 9-position. Our star compound, ANOMe-Cy5, exhibits intense NIR absorption, the highest 1O2 quantum yield (4.48-fold higher than Cy5), the longest triplet-state lifetime (9.80-fold longer than Cy5), and lossless emission intensity (nearly no change compared with Cy5). Such excellent photophysical properties coupled with its inherently cationic and hydrophilic nature enable the photosensitizer to realize photoablation of solid tumor and antitumor lung metastasis. This study highlights the design of a new generation of NIR photosensitizers for imaging-guided photodynamic cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Carbocianinas/farmacologia , Corantes Fluorescentes/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Carbocianinas/síntese química , Carbocianinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
9.
J Am Chem Soc ; 143(40): 16332-16336, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34582201

RESUMO

Colloidal bismuth therapeutics have been used for hundreds of years, yet remain mysterious. Here we report an X-ray pair distribution function (PDF) study of the solvolysis of bismuth disalicylate, a model for the metallodrug bismuth subsalicylate (Pepto-Bismol). This reveals catalysis by traces of water, followed by multistep cluster growth. The ratio of the two major species, {Bi9O7} and {Bi38O44}, depends on exposure to air, time, and the solvent. The solution-phase cluster structures are of significantly higher symmetry in comparison to solid-state analogues, with reduced off-center Bi3+ displacements. This explains why such "magic-size" clusters can be both stable enough to crystallize and sufficiently labile for further growth.


Assuntos
Bismuto , Compostos Organometálicos , Salicilatos
10.
Analyst ; 146(13): 4219-4225, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34076650

RESUMO

Fluorescent thermometers based on organic dyes play an important role in the visualization of dynamic temperature topography with high resolution. Many molecular thermometers contain two fluorophores with different temperature responses to achieve ratiometric temperature detection. However, the stability and reliability of such ratiometric thermometers are highly dependent on the susceptibility of the fluorophores towards photobleaching. Despite the use of single-fluorophore ratiometric thermometers in previous reports, the difficulty and complexity in their molecular design and synthesis severely hinder their widespread applicability. In this work, we have investigated the use of commercially available dyes (i.e., BD140 and LD688) with conformational isomers as ratiometric thermometers. Each of these dyes consists of a mixture of conformers with distinct UV-vis absorption and emission spectra. The thermal equilibrium of these conformers successfully enabled the development of ratiometric thermometers with good stability and reliability.


Assuntos
Corantes Fluorescentes , Termômetros , Ionóforos , Reprodutibilidade dos Testes , Temperatura
11.
J Phys Chem A ; 125(38): 8397-8403, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34546046

RESUMO

Understanding the mechanisms of aggregation-induced emission (AIE) is essential for the rational design and deployment of AIEgens toward various applications. Such a deep mechanistic understanding demands a thorough investigation of the excited-state behaviors of AIEgens. However, because of considerable complexity and rapid decay, these behaviors are often not experimentally accessible and the mechanistic comprehension of many AIEgens is lacking. Herein, utilizing detailed quantum chemical calculations, we provide insights toward the AIE mechanism of 1-(N,N-dialkylamino)-naphthalene (DAN) derivatives. Our theoretical analysis, corroborated by experimental observations, leads to the discovery that modulating the formation of the twisted intramolecular charge transfer (TICT) state (caused by the rotation of the amino groups) and managing the steric hindrance to minimize solid-state intermolecular interactions provides a plausible explanation for the AIE characteristics of DAN derivatives. These results will inspire the deployment of the TICT mechanism as a useful design strategy toward AIEgen development.

12.
Angew Chem Int Ed Engl ; 60(47): 25104-25113, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34519394

RESUMO

Although super-resolution imaging offers an opportunity to visualize cellular structures and organelles at the nanoscale level, cellular heterogeneity and unpredictability still pose a significant challenge in the dynamic imaging of live cells. It is thus vital to develop better-performing and more photostable probes for long-term super-resolution imaging. Herein, we report a probe, LD-FG, for imaging lipid droplet (LD) dynamics using structured illumination microscopy (SIM). LD-FG allows wash-free imaging of LDs, owing to a hydrogen-bond sensitive fluorogenic response. The replacement of photobleached LD-FG by intact probe molecules outside the LDs ensures the long-time stability of the fluorescence imaging. With this buffering fluorogenic probe, fast and unpredictable dynamic processes of LDs can be visualized. Using this probe, two LD coalescence modes were discovered. The dynamic imaging also allowed us to propose a new model of LD maturation during adipocyte differentiation, i.e., a fast LD coalescence followed by a slow ripening step. The excellent performance of LD-FG makes the buffer strategy an effective method for designing fluorescent probes for cell dynamic imaging.


Assuntos
Corantes Fluorescentes/química , Gotículas Lipídicas/química , Soluções Tampão , Humanos , Ligação de Hidrogênio , Estrutura Molecular
13.
Angew Chem Int Ed Engl ; 60(32): 17481-17490, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33982390

RESUMO

The ability to rationally design and predictably construct crystalline solids has been the hallmark of crystal engineering research. To date, numerous examples of multicomponent crystals comprising organic molecules have been reported. However, the crystal engineering of cocrystals comprising both organic and inorganic chemical units is still poorly understood and mostly unexplored. Here, we report a new diverse set of higher-order cocrystals (HOCs) based on the structurally versatile-yet largely unexplored-phosph(V/V)azane heterosynthon building block. The novel ternary and quaternary cocrystals reported are held together by synergistic and orthogonal intermolecular interactions. Notably, the HOCs can be readily obtained either via sequential or one-pot mechanochemical methods. Computational modelling methods reveal that the HOCs are thermodynamically driven to form and that their mechanical properties strongly depend on the composition and intermolecular forces in the crystal, offering untapped potential for optimizing material properties.

14.
Chem Soc Rev ; 48(8): 2274-2292, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30806391

RESUMO

In the last few decades, mechanochemistry has become rapidly established as a powerful tool enabling environmentally-benign and sustainable chemical syntheses. Not only have these techniques been demonstrated as viable alternatives to traditional solution-based syntheses, but they have also received attention for their ability to enable new reactivity and "unlocking" novel compounds inaccessible by conventional methods. Reflecting the rising popularity of mechanochemistry, many excellent reviews highlighting its benefits have recently been published. Whilst the scope of most of these focuses on organic chemistry, transition-metal catalysis, porous framework materials, coordination compounds and supramolecular synthesis, few have addressed the use of mechanochemical ball milling for the synthesis of compounds containing s- and p-block elements. This tutorial review turns the spotlight towards mechanochemical research in the field of inorganic main group chemistry, highlighting significant advantages that solid-state inorganic reactions often possess, and the potential for these to drive the development of greener methodologies within the modern main group arena.

15.
Angew Chem Int Ed Engl ; 59(45): 20215-20223, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32776641

RESUMO

Herein, we reported a simple, fast, and quantitative theoretical descriptor ΔGC-O that allows accurate predictions of a wide range of spontaneously blinking rhodamines. ΔGC-O denotes the Gibbs free energy differences between the closed and open forms of rhodamines and has a good linear relationship with experimental pKcycl values. This correlation affords an effective guide for the quantitative designs of spontaneously blinking rhodamines and eliminates trial-and-error. We have validated the predictive power of ΔGC-O via the development of two spontaneously blinking rhodamines of different colors and enhanced brightness. We also demonstrated their super-resolution imaging utilities in dynamic live-cell imaging. We expect that ΔGC-O will greatly facilitate the efficient creations of spontaneously blinking fluorophores and aid the advancements of super-resolution bioimaging techniques.


Assuntos
Rodaminas/metabolismo , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência/métodos
16.
Angew Chem Int Ed Engl ; 59(25): 10160-10172, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31943591

RESUMO

Inhibition of TICT can significantly increase the brightness of fluorescent materials. Accurate prediction of TICT is thus critical for the quantitative design of high-performance fluorophores and AIEgens. TICT of 14 types of popular organic fluorophores were modeled with time-dependent density functional theory (TD-DFT). A reliable and generalizable computational approach for modeling TICT formations was established. To demonstrate the prediction power of our approach, we quantitatively designed a boron dipyrromethene (BODIPY)-based AIEgen which exhibits (almost) barrierless TICT rotations in monomers. Subsequent experiments validated our molecular design and showed that the aggregation of this compound turns on bright emissions with ca. 27-fold fluorescence enhancement, as TICT formation is inhibited in molecular aggregates.

17.
J Am Chem Soc ; 140(5): 1952-1955, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29323900

RESUMO

Highly enantioselective bisguanidinium-catalyzed tandem rearrangements of acylsilanes are reported. The acylsilanes were activated via an addition of fluoride on the silicon to form a penta-coordinate anionic silicate intermediate. The silicate then underwent alkyl or aryl group migration from the silicon atom to the neighboring carbonyl carbon atom (1,2-anionotropic rearrangement), followed by [1,2]-Brook rearrangement to provide the secondary alcohols in high yields with excellent enantioselectivities (up to 95% ee). The isolation of an α-silylcarbinol intermediate as well as DFT calculations revealed that the 1,2-anionotropic rearrangement occurred via a bisguanidinium silicate ion pair, which is the stereodetermining step. The chiral center formed is then retained without inversion through the subsequent [1,2]-Brook rearrangement. Crotyl acylsilanes were smoothly transformed into homoallylic linear crotyl alcohols with retention of E/Z geometry, and no branched alcohols were detected. This clearly suggested that the 1,2-anionotropic rearrangement occurred through a three-membered instead of a five-membered transition state.

18.
J Am Chem Soc ; 140(27): 8448-8455, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894179

RESUMO

Highly enantioselective allylic alkynylation of racemic bromides under biphasic condition is furnished in this report. This approach employs functionalized terminal alkynes as pro-nucleophiles and provides 6- and 7-membered cyclic 1,4-enynes with high yields and excellent enantioselectivities (up to 96% ee) under mild conditions. Enantioretentive derivatizations highlight the synthetic utility of this transformation. Cold-spray ionization mass spectrometry (CSI-MS) and X-ray crystallography were used to identify some catalytic intermediates, which include guanidinium cuprate ion pairs and a copper-alkynide complex. A linear correlation between the enantiopurity of the catalyst and reaction product indicates the presence of a copper complex bearing a single guanidine ligand at the enantio-determining step. Further experimental and computational studies supported that the alkynylation of allylic bromide underwent an anti-SN2' pathway catalyzed by nucleophilic cuprate species. Moreover, metal-assisted racemization of allylic bromide allowed the reaction to proceed in a dynamic kinetic fashion to afford the major enantiomer in high yield.

19.
Inorg Chem ; 57(17): 10993-11004, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30125095

RESUMO

Herein we describe that oxidation reactions of the dimeric cyclophosphazanes, [{P(µ-NR)}2(µ-NR)]2, R = tBu (1), to produce a series of diagonally dioxidized products P4(µ-N tBu)6E2 [E = O (2), S (3), and Se (4)] and tetraoxidized frameworks. The latter display an unexpected C-N bond activation and cleavage to produce a series of novel phosphazane macrocyclic arrangements containing newly formed N-H bonds. Macromolecules P4(µ-N tBu)4(µ-NH)2O4 (5) and P4(µ-N tBu)3(µ-NH)3E4, E = S (6) and Se (7), dicleaved and tricleaved products, respectively, are rare examples of dimeric macrocycles containing NH bridging groups. Our theoretical and experimental studies illustrate that the extent to which these C-N bonds are cleaved can be controlled by modification of steric parameters in their synthesis, by adjusting either the steric bulk of the substituents in the parent framework or the size of the chalcogen element introduced during the oxidation process. Our findings represent new synthetic pathways for the synthesis of otherwise-elusive macrocycle arrangements within the phosphazane family.

20.
Psychiatr Psychol Law ; 25(3): 374-385, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31984026

RESUMO

International research suggests that a proportion of youth facing legal charges are at risk of being unfit (or incompetent) to stand trial. In New Zealand, only a fraction of youth coming before Youth Court are referred for fitness to stand trial evaluations. Amid debate surrounding notions that youth offending could be deterred by providing harsher penalties, it is important to consider fitness to stand trial in youth facing criminal proceedings. This study sought to capture a cross-sectional view of how fitness (competency) to stand trial is addressed in the Youth Court, and how evaluator opinions relate to ultimate court findings. A retrospective review of reports for fitness to stand trial in 79 youth consecutively referred to the Regional Youth Forensic Service from 2010 to 2015 was conducted. Data were combined with Youth Court outcomes obtained from the Ministry of Justice. The mean age is 15.6 years. Intellectual disability is associated with unfit opinions and legal findings (p = .002 and p = .03, respectively), and cases disposed through the Intellectual Disability (Compulsory Care and Rehabilitation) Act 2003. Immaturity itself does not appear to have a significant effect on evaluator opinions or court findings of fitness to stand trial. The majority of the referred youth were both opined and found fit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA