Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(22): 10317-10325, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37937967

RESUMO

Thin film-based thermal flow sensors afford applications in healthcare and industries owing to their merits in preserving initial flow distributions. However, traditional thermal flow sensors are primarily applied to track flow intensities based on hot-wire or hot-film sensing mechanisms due to their relatively facile device configurations and fabrication strategies. Herein, a calorimetric thermal flow sensor is proposed based on laser direct writing to form laser-induced graphene as heaters and temperature sensors, resulting in monitoring both flow intensities and orientations. Via homogeneously surrounding spiral heaters with multiple temperature sensors, the device exhibits high sensitivity (∼162 K·s/m) at small flows with an extended flow detection range (∼25 m/s). Integrating the device with a data-acquisition board and a dual-mode graphical user interface enables wirelessly and dynamically monitoring respiration and the motion of robotic arms. This versatile flow sensor with facile manufacturing affords potentials in health inspection, remote monitoring, and studying hydrodynamics.

2.
J Phys Chem Lett ; : 10457-10464, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392341

RESUMO

Electric field-induced surface-enhanced Raman scattering (E-SERS) substrates have been proven to further enhance the attained Raman intensity. Herein, integrated with plasmonic Ag nanoparticles (Ag NPs), the thermoelectric Bi2Te3 plate as an E-SERS substrate decreased the limit of detection by 2 orders of magnitude and increased the SERS signal by >20 times compared to those without electrical field induction. The thermoelectric potential produced by the Bi2Te3 plate could modulate the electron density and subsequently change the Fermi level of Ag. This increases the resonant electron transition probability using a broad range of molecules. The plasmon-activated catalytic reactions of the interconversion between p-nitrothiophenol and p,p'-dimercaptoazobenzene could be controlled through the E-SERS template. On the basis of the finite element method, explicit theoretical analysis indicated that the Ag NP-Bi2Te3-molecule charge transfer could improve our understanding of the SERS and photocatalytic mechanism.

3.
ACS Sens ; 9(1): 502-513, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38193423

RESUMO

Electric-induced surface-enhanced Raman scattering (E-SERS) has been widely studied for its flexible regulation of SERS after the substrate is prepared. However, the enhancement effect is not sufficiently high in the E-SERS technology reported thus far, and no suitable field of application exists. In this study, a highly sensitive thermoelectrically induced SERS substrate, Ag/graphene/ZnO (AGZ), was fabricated using ZnO nanoarrays (NRs), graphene, and Ag nanoparticles (NPs). Applying a temperature gradient to the ZnO NRs enhanced the SERS signals of the probe molecules by a factor of approximately 20. Theoretical and experimental results showed that the thermoelectric potential enables the simultaneous modulation of the Fermi energy level of graphene and the plasma resonance peak of Ag NPs, resulting in a double enhancement in terms of physical and chemical mechanisms. The AGZ substrate was then combined with a mask to create a wearable thermoelectrically enhanced SERS mask for collecting SARS-CoV-2 viruses and microplastics. Its SERS signal can be enhanced by the temperature gradient created between a body heat source (∼37 °C) and a cold environment. The suitability of this method for virus detection was also examined using a reverse transcription-polymerase chain reaction and SARS-CoV-2 virus antigen detection. This work offers new horizons for research of E-SERS, and its application potential for rapid detection of the SARS-CoV-2 virus and microplastics was also studied.


Assuntos
COVID-19 , Grafite , Nanopartículas Metálicas , Óxido de Zinco , Humanos , SARS-CoV-2 , Nanopartículas Metálicas/química , Microplásticos , Plásticos , Óxido de Zinco/química , Prata/química , COVID-19/diagnóstico
4.
ACS Appl Mater Interfaces ; 16(9): 12085-12094, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385172

RESUMO

Actively controlling surface-enhanced Raman scattering (SERS) performance plays a vital role in highly sensitive detection or in situ monitoring. Nevertheless, it is still challenging to achieve further modulation of electromagnetic enhancement and chemical enhancement simultaneously in SERS detection. In this study, a silver nanocavity structure with graphene as a spacer layer is coupled with thermoelectric semiconductor P-type gallium nitride (GaN) to form an electric-field-induced SERS (E-SERS) for dual enhancement. After applying the electric field, the intensity of SERS signals is further enhanced by over 10 times. The thermoelectric field enables fast and reproducible doping of graphene, thereby modulating its Fermi level over a wide range. The thermoelectric field also regulates the position of the plasmon resonance peak of the silver nanocavity structure, rendering synchronous dual electromagnetic and chemical regulation. Additionally, the method enables the trace detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A detailed theoretical analysis is performed based on the experimental results and finite-element calculations, paving the way for the fabrication of high-efficient E-SERS substrates.

5.
J Phys Chem Lett ; 14(25): 5932-5939, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37345745

RESUMO

To improve the drawback of surface-enhanced Raman scattering (SERS) sensors that are sensitive to excitation angles and realize the monitoring of contaminants in complex environments, we have proposed and prepared a cascaded wire-in-cavity-in-bowl (WICIB) structure on flexible polydimethysiloxane, with feasibility for plasmonic coupling. We demonstrated that the WICIB structure can serve as a highly sensitive, homogeneous, and stable SERS substrate for conventional detection. The plasmonic coupling and distribution of the enhanced electromagnetic field were evidently proven by finite element simulations, and the strong electromagnetic field was regulated around the wire and inside the cavity, which is very beneficial for the polydirectional and in situ detection. By virtue of the triple synergistic enhancement effect and unique optical properties, we successfully achieved the in situ detection of the residual pollutant molecules, ziram and 2-naphthalenethiol, in microdroplets of apple juice and lake water. Accordingly, such a flexible SERS sensor exhibits great potential in on-site environmental monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA