Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 125(4): 677-690, 2020 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-31922527

RESUMO

BACKGROUND AND AIMS: Hosting several global biodiversity hotspots, the region of the Qinghai-Tibetan Plateau (QTP) is exceptionally species-rich and harbours a remarkable level of endemism. Yet, despite a growing number of studies, factors fostering divergence, speciation and ultimately diversity remain poorly understood for QTP alpine plants. This is particularly the case for the role of hybridization. Here, we explored the evolutionary history of three closely related Gentiana endemic species, and tested whether our results supported the mountain geo-biodiversity hypothesis (MGH). METHODS: We genotyped 69 populations across the QTP with one chloroplast marker and 12 nuclear microsatellite loci. We performed phylogeographical analysis, Bayesian clustering, approximate Bayesian computation and principal components analysis to explore their genetic relationship and evolutionary history. In addition, we modelled their distribution under different climates. KEY RESULTS: Each species was composed of two geographically distinct clades, corresponding to the south-eastern and north-western parts of their distribution. Thus Gentiana veitchiorum and G. lawrencei var. farreri, which diverged recently, appear to have shared at least refugia in the past, from which their range expanded later on. Indeed, climatic niche modelling showed that both species went through continuous expansion from the Last Interglacial Maximum to the present day. Moreover, we have evidence of hybridization in the northwest clade of G. lawrencei var. farreri, which probably occurred in the refugium located on the plateau platform. Furthermore, phylogenetic and population genetic analyses suggested that G. dolichocalyx should be a geographically limited distinct species with low genetic differentiation from G. lawrencei var. farreri. CONCLUSIONS: Climatic fluctuations in the region of the QTP have played an important role in shaping the current genetic structure of G. lawrencei var. farreri and G. veitchiorum. We argue that a species pump effect did occur prior to the Last Interglacial Maximum, thus lending support to the MGH. However, our results do depart from expectations as suggested in the MGH for more recent distribution range and hybridization dynamics.


Assuntos
DNA de Cloroplastos , Gentiana , Teorema de Bayes , Variação Genética , Filogenia , Tibet
2.
Chemosphere ; 349: 140844, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042419

RESUMO

Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.


Assuntos
Dinoflagellida , Fósforo , Fósforo/metabolismo , Lipídeos de Membrana/metabolismo , Dinoflagellida/metabolismo , Proliferação Nociva de Algas , Fosfolipídeos/metabolismo , Autofagia
3.
Harmful Algae ; 129: 102532, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951614

RESUMO

Polyphosphate (polyP) has long been recognized as a crucial intracellular reservoir for phosphorus in microorganisms. However, the dynamics of polyP and its regulatory mechanism in eukaryotic phytoplankton in response to variations in external phosphorus conditions remain poorly understood. A comprehensive investigation was conducted to examine the intracellular polyP-associated metabolic response of the dinoflagellate Karenia mikimotoi, a harmful algal bloom species, through integrated physiological, biochemical, and transcriptional analyses under varying external phosphorus conditions. Comparable growth curves and Fv/Fm between phosphorus-replete conditions and phosphorus-depleted conditions suggested that K. mikimotoi has a strong capability to mobilize the intracellular phosphorus pool for growth under phosphorus deficiency. Intracellular phosphate (IPi) and polyP contributed approximately 6-23 % and 1-3 %, respectively, to the overall particulate phosphorus (PP) content under different phosphorus conditions. The significant decrease in PP and increase in polyP:PP suggested that cellular phosphorus components other than polyP are preferred for utilization under phosphorus deficiency. Genes involved in polyP synthesis and hydrolysis were upregulated to maintain phosphorus homeostasis in K. mikimotoi. These findings provide novel insights into the specific cellular strategies for phosphorus storage and the transcriptional response in intracellular polyP metabolism in K. mikimotoi. Additionally, these results also indicate that polyP may not play a crucial role in cellular phosphorus storage in phytoplankton, at least in dinoflagellates.


Assuntos
Dinoflagellida , Dinoflagellida/genética , Fósforo , Polifosfatos , Proliferação Nociva de Algas , Fitoplâncton , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA