Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Virol ; 98(6): e0053124, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38709106

RESUMO

Human coronavirus (hCoV) OC43 is endemic to global populations and usually causes asymptomatic or mild upper respiratory tract illness. Here, we demonstrate the neutralization efficacy of isolated nanobodies from alpacas immunized with the S1B and S1C domain of the hCoV-OC43 spike glycoprotein. A total of 40 nanobodies bound to recombinant OC43 protein with affinities ranging from 1 to 149 nM. Two nanobodies WNb 293 and WNb 294 neutralized virus at 0.21 and 1.79 nM, respectively. Intranasal and intraperitoneal delivery of WNb 293 fused to an Fc domain significantly reduced nasal viral load in a mouse model of hCoV-OC43 infection. Using X-ray crystallography, we observed that WNb 293 bound to an epitope on the OC43 S1B domain, distal from the sialoglycan-binding site involved in host cell entry. This result suggests that neutralization mechanism of this nanobody does not involve disruption of glycan binding. Our work provides characterization of nanobodies against hCoV-OC43 that blocks virus entry and reduces viral loads in vivo and may contribute to future nanobody-based therapies for hCoV-OC43 infections. IMPORTANCE: The pandemic potential presented by coronaviruses has been demonstrated by the ongoing COVID-19 pandemic and previous epidemics caused by severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus. Outside of these major pathogenic coronaviruses, there are four endemic coronaviruses that infect humans: hCoV-OC43, hCoV-229E, hCoV-HKU1, and hCoV-NL63. We identified a collection of nanobodies against human coronavirus OC43 (hCoV-OC43) and found that two high-affinity nanobodies potently neutralized hCoV-OC43 at low nanomolar concentrations. Prophylactic administration of one neutralizing nanobody reduced viral loads in mice infected with hCoV-OC43, showing the potential for nanobody-based therapies for hCoV-OC43 infections.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Camelídeos Americanos , Infecções por Coronavirus , Coronavirus Humano OC43 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Carga Viral , Animais , Anticorpos de Domínio Único/imunologia , Camundongos , Anticorpos Neutralizantes/imunologia , Coronavirus Humano OC43/imunologia , Humanos , Anticorpos Antivirais/imunologia , Camelídeos Americanos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Feminino , Epitopos/imunologia , Cristalografia por Raios X , Internalização do Vírus/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893175

RESUMO

Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2/imunologia , Anticorpos de Domínio Único , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , COVID-19/imunologia , Camelídeos Americanos , Humanos , Camundongos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia
3.
Biochemistry ; 62(2): 437-450, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35951410

RESUMO

The improved production, recycling, and removal of plastic waste, such as polyethylene terephthalate (PET), are pressing environmental and economic issues for society. Biocatalytic (enzymatic) PET depolymerization is potentially a sustainable, low-energy solution to PET recycling, especially when compared with current disposal methods such as landfills, incineration, or gasification. IsPETase has been extensively studied for its use in PET depolymerization; however, its evolution from cutinases is not fully understood, and most engineering studies have neglected the majority of the available sequence space remote from the active site. In this study, ancestral protein reconstruction (ASR) has been used to trace the evolutionary trajectory from ancient serine hydrolases to IsPETase, while ASR and the related design approach, protein repair one-stop shop, were used to identify enzyme variants with improved activity and stability. Kinetic and structural characterization of these variants reveals new insights into the evolution of PETase activity and the role of second-shell mutations around the active site. Among the designed and reconstructed variants, we identified several with melting points 20 °C higher than that of IsPETase and two variants with significantly higher catalytic activity.


Assuntos
Burkholderiales , Hidrolases , Hidrolases/química , Burkholderiales/genética , Burkholderiales/metabolismo , Domínio Catalítico , Mutação , Polietilenotereftalatos/metabolismo
4.
Med Microbiol Immunol ; 212(4): 291-305, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37477828

RESUMO

Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Vacina BNT162 , Imunoglobulina G , Mutação , Receptores de IgG , SARS-CoV-2/genética
5.
Biochem J ; 479(24): 2529-2546, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36520108

RESUMO

Transmission blocking interventions can stop malaria parasite transmission from mosquito to human by inhibiting parasite infection in mosquitos. One of the most advanced candidates for a malaria transmission blocking vaccine is Pfs230. Pfs230 is the largest member of the 6-cysteine protein family with 14 consecutive 6-cysteine domains and is expressed on the surface of gametocytes and gametes. Here, we present the crystal structure of the first two 6-cysteine domains of Pfs230. We identified high affinity Pfs230-specific nanobodies that recognized gametocytes and bind to distinct sites on Pfs230, which were isolated from immunized alpacas. Using two non-overlapping Pfs230 nanobodies, we show that these nanobodies significantly blocked P. falciparum transmission and reduced the formation of exflagellation centers. Crystal structures of the transmission blocking nanobodies with the first 6-cysteine domain of Pfs230 confirm that they bind to different epitopes. In addition, these nanobodies bind to Pfs230 in the absence of the prodomain, in contrast with the binding of known Pfs230 transmission blocking antibodies. These results provide additional structural insight into Pfs230 domains and elucidate a mechanism of action of transmission blocking Pfs230 nanobodies.


Assuntos
Malária , Anticorpos de Domínio Único , Animais , Humanos , Plasmodium falciparum/química , Proteínas de Protozoários/química , Antígenos de Protozoários/química , Cisteína , Anticorpos Antiprotozoários
6.
J Biol Chem ; 296: 100447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617878

RESUMO

The fibronectin type III (FN3) monobody domain is a promising non-antibody scaffold, which features a less complex architecture than an antibody while maintaining analogous binding loops. We previously developed FN3Con, a hyperstable monobody derivative with diagnostic and therapeutic potential. Prestabilization of the scaffold mitigates the stability-function trade-off commonly associated with evolving a protein domain toward biological activity. Here, we aimed to examine if the FN3Con monobody could take on antibody-like binding to therapeutic targets, while retaining its extreme stability. We targeted the first of the Adnectin derivative of monobodies to reach clinical trials, which was engineered by directed evolution for binding to the therapeutic target VEGFR2; however, this function was gained at the expense of large losses in thermostability and increased oligomerization. In order to mitigate these losses, we grafted the binding loops from Adnectin-anti-VEGFR2 (CT-322) onto the prestabilized FN3Con scaffold to produce a domain that successfully bound with high affinity to the therapeutic target VEGFR2. This FN3Con-anti-VEGFR2 construct also maintains high thermostability, including remarkable long-term stability, retaining binding activity after 2 years of storage at 36 °C. Further investigations into buffer excipients doubled the presence of monomeric monobody in accelerated stability trials. These data suggest that loop grafting onto a prestabilized scaffold is a viable strategy for the development of monobody domains with desirable biophysical characteristics and that FN3Con is therefore well-suited to applications such as the evolution of multiple paratopes or shelf-stable diagnostics and therapeutics.


Assuntos
Anticorpos/metabolismo , Domínio de Fibronectina Tipo III/genética , Anticorpos/imunologia , Domínio de Fibronectina Tipo III/imunologia , Fibronectinas/genética , Fibronectinas/imunologia , Fibronectinas/metabolismo , Engenharia Genética/métodos , Humanos , Regiões de Interação com a Matriz , Mutação , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/genética , Ligação Proteica/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
J Immunol ; 203(12): 3395-3406, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31694911

RESUMO

High-throughput TCR sequencing allows interrogation of the human TCR repertoire, potentially connecting TCR sequences to antigenic targets. Unlike the highly polymorphic MHC proteins, monomorphic Ag-presenting molecules such as MR1, CD1d, and CD1b present Ags to T cells with species-wide TCR motifs. CD1b tetramer studies and a survey of the 27 published CD1b-restricted TCRs demonstrated a TCR motif in humans defined by the TCR ß-chain variable gene 4-1 (TRBV4-1) region. Unexpectedly, TRBV4-1 was involved in recognition of CD1b regardless of the chemical class of the carried lipid. Crystal structures of two CD1b-specific TRBV4-1+ TCRs show that germline-encoded residues in CDR1 and CDR3 regions of TRBV4-1-encoded sequences interact with each other and consolidate the surface of the TCR. Mutational studies identified a key positively charged residue in TRBV4-1 and a key negatively charged residue in CD1b that is shared with CD1c, which is also recognized by TRBV4-1 TCRs. These data show that one TCR V region can mediate a mechanism of recognition of two related monomorphic Ag-presenting molecules that does not rely on a defined lipid Ag.


Assuntos
Motivos de Aminoácidos , Antígenos CD1d/química , Antígenos CD1d/metabolismo , Sítios de Ligação , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Apresentação de Antígeno , Sequência Conservada , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Rearranjo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Lipídeos/química , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Relação Estrutura-Atividade , Linfócitos T/imunologia , Linfócitos T/metabolismo
8.
J Immunol ; 192(9): 4054-60, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24683194

RESUMO

Current views emphasize TCR diversity as a key feature that differentiates the group 1 (CD1a, CD1b, CD1c) and group 2 (CD1d) CD1 systems. Whereas TCR sequence motifs define CD1d-reactive NKT cells, the available data do not allow a TCR-based organization of the group 1 CD1 repertoire. The observed TCR diversity might result from donor-to-donor differences in TCR repertoire, as seen for MHC-restricted T cells. Alternatively, diversity might result from differing CD1 isoforms, Ags, and methods used to identify TCRs. Using CD1b tetramers to isolate clones recognizing the same glycolipid, we identified a previously unknown pattern of V gene usage (TRAV17, TRBV4-1) among unrelated human subjects. These TCRs are distinct from those present on NKT cells and germline-encoded mycolyl lipid-reactive T cells. Instead, they resemble the TCR of LDN5, one of the first known CD1b-reactive clones that was previously thought to illustrate the diversity of the TCR repertoire. Interdonor TCR conservation was observed in vitro and ex vivo, identifying LDN5-like T cells as a distinct T cell type. These data support TCR-based organization of the CD1b repertoire, which consists of at least two compartments that differ in TCR sequence motifs, affinity, and coreceptor expression.


Assuntos
Motivos de Aminoácidos/imunologia , Receptores de Antígenos de Linfócitos T/química , Subpopulações de Linfócitos T/química , Antígenos CD1/imunologia , Sequência de Bases , Sequência Conservada/imunologia , Citometria de Fluxo , Glicolipídeos/imunologia , Humanos , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia
10.
FEMS Microbes ; 3: xtac005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308105

RESUMO

During the different stages of the Plasmodium life cycle, surface-associated proteins establish key interactions with the host and play critical roles in parasite survival. The 6-cysteine (6-cys) protein family is one of the most abundant surface antigens and expressed throughout the Plasmodium falciparum life cycle. This protein family is conserved across Plasmodium species and plays critical roles in parasite transmission, evasion of the host immune response and host cell invasion. Several 6-cys proteins are present on the parasite surface as hetero-complexes but it is not known how two 6-cys proteins interact together. Here, we present a crystal structure of Pf12 bound to Pf41 at 2.85 Å resolution, two P. falciparum proteins usually found on the parasite surface of late schizonts and merozoites. Our structure revealed two critical interfaces required for complex formation with important implications on how different 6-cysteine proteins may interact with each other. Using structure-function analyses, we identified important residues for Pf12-Pf41 complex formation. In addition, we generated 16 nanobodies against Pf12 and Pf41 and showed that several Pf12-specific nanobodies inhibit Pf12-Pf41 complex formation. Using X-ray crystallography, we were able to describe the structural mechanism of an inhibitory nanobody in blocking Pf12-Pf41 complex formation. Future studies using these inhibitory nanobodies will be useful to determine the functional role of these two 6-cys proteins in malaria parasites.

11.
JACS Au ; 1(12): 2349-2360, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34977903

RESUMO

Protein conformational changes can facilitate the binding of noncognate substrates and underlying promiscuous activities. However, the contribution of substrate conformational dynamics to this process is comparatively poorly understood. Here, we analyze human (hMAT2A) and Escherichia coli (eMAT) methionine adenosyltransferases that have identical active sites but different substrate specificity. In the promiscuous hMAT2A, noncognate substrates bind in a stable conformation to allow catalysis. In contrast, noncognate substrates sample stable productive binding modes less frequently in eMAT owing to altered mobility in the enzyme active site. Different cellular concentrations of substrates likely drove the evolutionary divergence of substrate specificity in these orthologues. The observation of catalytic promiscuity in hMAT2A led to the detection of a new human metabolite, methyl thioguanosine, that is produced at elevated levels in a cancer cell line. This work establishes that identical active sites can result in different substrate specificity owing to the effects of substrate and enzyme dynamics.

12.
Cell Rep ; 37(2): 109822, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34610292

RESUMO

Potent neutralizing monoclonal antibodies are one of the few agents currently available to treat COVID-19. SARS-CoV-2 variants of concern (VOCs) that carry multiple mutations in the viral spike protein can exhibit neutralization resistance, potentially affecting the effectiveness of some antibody-based therapeutics. Here, the generation of a diverse panel of 91 human, neutralizing monoclonal antibodies provides an in-depth structural and phenotypic definition of receptor binding domain (RBD) antigenic sites on the viral spike. These RBD antibodies ameliorate SARS-CoV-2 infection in mice and hamster models in a dose-dependent manner and in proportion to in vitro, neutralizing potency. Assessing the effect of mutations in the spike protein on antibody recognition and neutralization highlights both potent single antibodies and stereotypic classes of antibodies that are unaffected by currently circulating VOCs, such as B.1.351 and P.1. These neutralizing monoclonal antibodies and others that bind analogous epitopes represent potentially useful future anti-SARS-CoV-2 therapeutics.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/ultraestrutura , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Cricetinae , Microscopia Crioeletrônica/métodos , Epitopos/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Testes de Neutralização , Ligação Proteica/fisiologia , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
13.
Sci Immunol ; 3(24)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884618

RESUMO

Rare individuals, termed HIV controllers, spontaneously control HIV infection by mounting efficient T cell responses against the virus. Protective CD4+ T cell responses from HIV controllers involve high-affinity public T cell receptors (TCRs) recognizing an immunodominant capsid epitope (Gag293) presented by a remarkably broad array of human leukocyte antigen (HLA) class II molecules. Here, we determine the structures of a prototypical public TCR bound to HLA-DR1, HLA-DR11, and HLA-DR15 molecules presenting the Gag293 epitope. TCR recognition was driven by contacts with the Gag293 epitope, a feature that underpinned the extensive HLA cross-restriction. These high-affinity TCRs promoted mature immunological synapse formation and cytotoxic capacity in both CD4+ and CD8+ T cells. The public TCRs suppressed HIV replication in multiple genetic backgrounds ex vivo, emphasizing the functional advantage conferred by broad HLA class II cross-restriction.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Antígenos HLA-D/imunologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Reações Cruzadas/imunologia , Fibroblastos , Células HEK293 , Voluntários Saudáveis , Humanos , Células Jurkat , Leucócitos Mononucleares , Ativação Linfocitária , Camundongos , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T/imunologia , Carga Viral/imunologia , Replicação Viral/imunologia
14.
Nat Commun ; 7: 13257, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27807341

RESUMO

CD1 proteins present microbial lipids to T cells. Germline-encoded mycolyl lipid-reactive (GEM) T cells with conserved αß T cell receptors (TCRs) recognize CD1b presenting mycobacterial mycolates. As the molecular basis underpinning TCR recognition of CD1b remains unknown, here we determine the structure of a GEM TCR bound to CD1b presenting glucose-6-O-monomycolate (GMM). The GEM TCR docks centrally above CD1b, whereby the conserved TCR α-chain extensively contacts CD1b and GMM. Through mutagenesis and study of T cells from tuberculosis patients, we identify a consensus CD1b footprint of TCRs present among GEM T cells. Using both the TCR α- and ß-chains as tweezers to surround and grip the glucose moiety of GMM, GEM TCRs create a highly specific mechanism for recognizing this mycobacterial glycolipid.


Assuntos
Antígenos CD1/metabolismo , Glicolipídeos/imunologia , Tuberculose Latente/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Mycobacterium phlei , Conformação Proteica , Rhodococcus equi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA