Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(18): 3161-3180, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35567414

RESUMO

RTL1/PEG11, which has been associated with anxiety disorders, is a retrotransposon-derived imprinted gene in the placenta. However, imprinting patterns and functions of RTL1 in the brain have not been well-investigated. We found Rtl1 was paternally, but not maternally, expressed in brain stem, thalamus, and hypothalamus of mice, and imprinting status of RTL1 was maintained in human brain. Paternal Rtl1 knockout (Rtl1m+/p-) mice had higher neonatal death rates due to impaired suckling, and low body weights beginning on embryonic day 16.5. High paternal expression of Rtl1 was detected in the locus coeruleus (LC) and Rtl1m+/p- mice showed an increased delay in time of onset for action potentials and inward currents with decreased neuronal excitability of LC neurons. Importantly, Rtl1m+/p- mice exhibited behaviors associated with anxiety, depression, fear-related learning and memory, social dominance, and low locomotor activity. Taken together, our findings demonstrate RTL1 is imprinted in brain, mediates emotional and social behaviors, and regulates excitability in LC neurons.


Assuntos
Proteínas da Gravidez , Retroelementos , Animais , Ansiedade/genética , Transtornos de Ansiedade/genética , Feminino , Impressão Genômica , Humanos , Locus Cerúleo/metabolismo , Camundongos , Neurônios/metabolismo , Gravidez , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Comportamento Social
2.
IBRO Neurosci Rep ; 16: 497-508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38655500

RESUMO

Microglia, resident immune cells of the brain that originate from the yolk sac, play a critical role in maintaining brain homeostasis by monitoring and phagocytosing pathogens and cellular debris in the central nervous system (CNS). While they share characteristics with myeloid cells, they are distinct from macrophages. In response to injury, microglia release pro-inflammatory factors and contribute to brain homeostasis through activities such as synapse pruning and neurogenesis. To better understand their role in neurological disorders, the generation of in vitro models of human microglia has become essential. These models, derived from patient-specific induced pluripotent stem cells (iPSCs), provide a controlled environment to study the molecular and cellular mechanisms underlying microglia-mediated neuroinflammation and neurodegeneration. The incorporation or generation of microglia into three-dimensional (3D) organoid cultures provides a more physiologically relevant environment that offers further opportunities to study microglial dynamics and disease modeling. This review describes several protocols that have been recently developed for the generation of human-induced microglia. Importantly, it highlights the promise of these in vitro models in advancing our understanding of brain disorders and facilitating personalized drug screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA