Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(22)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35172297

RESUMO

Two-dimensional (2D) materials including black phosphorus (BP) have been extensively investigated because of their exotic physical properties and potential applications in nanoelectronics and optoelectronics. Fabricating BP based devices is challenging because BP is extremely sensitive to the external environment, especially to the chemical contamination during the lithography process. The direct evaporation through shadow mask technique is a clean method for lithography-free electrode patterning of 2D materials. Herein, we employ the lithography-free evaporation method for the construction of BP based field-effect transistors and photodetectors and systematically compare their performances with those of BP counterparts fabricated by conventional lithography and transfer electrode methods. The results show that BP devices fabricated by direct evaporation method possess higher mobility, faster response time, and smaller hysteresis than those prepared by the latter two methods. This can be attributed to the clean interface between BP and evaporated-electrodes as well as the lower Schottky barrier height of 20.2 meV, which is given by the temperature-dependent electrical results. Furthermore, the BP photodetectors exhibit a broad-spectrum response and polarization sensitivity. Our work elucidates a universal, low-cost and high-efficiency method to fabricate BP devices for optoelectronic applications.

2.
Adv Sci (Weinh) ; 11(6): e2307569, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38155495

RESUMO

Deep NIR organic phototheranostic molecules generally have large π-conjugation structures and show highly hydrophobic properties, thus, forming strong π-π stacking in the aqueous medium, which will affect the phototheranostic performance. Herein, an end-group strategy is developed to lift the performance of NIR-II emitting photosensitizers. Extensive characterizations reveal that the hydrogen-bonding interactions of the hydroxyl end group can induce a more intense π-π electronic coupling than the chlorination-mediated intermolecular forces. The results disclose that π-π stacking will lower fluorescence quantum yield but significantly benefit the photodynamic therapy (PDT) efficiency. Accordingly, an asymmetrically substituted derivative (BTIC-δOH-2Cl) is developed, which shows balanced phototheranostic properties with excellent PDT efficiency (14.6 folds of ICG) and high NIR-II fluorescence yield (2.27%). It proves the validity of the end-group strategy on controlling the π-π interactions and rational tuning the performance of NIR-II organic phototheranostic agents.

3.
J Phys Chem Lett ; 13(36): 8553-8557, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067392

RESUMO

As an electric current passes through an organic semiconductor, a small number of organic molecules will inevitably act as a polaron state that is similar to an ionic charged state. The continuous device operation of organic semiconducting molecules is directly associated with the stability of the charged state. Herein, we choose the high-performance Y-series of nonfullerene acceptors to investigate the stability by a spectro-electrochemical technique. The results reveal the discoloration of molecules in the charged state and can be partially recovered after neutralization with about 10% irreversible part. It is found that the degree of the irreversible process is associated with halogen substituents at the end groups, and the irreversible reactions are also discussed. Our results reveal that the stability of a charged state can be improved by the fine-tuning of the molecular structures, and the local charge density can also be rapidly reduced by the high carrier mobility, the key factor to improving the stability of nonfullerene acceptors for better practical applications.

4.
Adv Mater ; 33(37): e2102778, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34318541

RESUMO

Bulk heterojunction (BHJ) organic solar cells (OSCs) have achieved great success because they overcome the shortcomings of short exciton diffusion distances. With the progress in material innovation and device technology, the efficiency of BHJ devices is continually being improved. For some special photovoltaic material systems, it is difficult to manipulate the miscibility and morphology of blend films, and this results in moderate, even poor device performance. Quasiplanar heterojunction (Q-PHJ) OSCs have been proposed to exploit the excellent photovoltaic properties of these materials. An OSC with BTIC-BO-4Cl has a 3D interpenetrating network structure with multiple channels that can facilitate the exciton diffusion and charge transport, and BTIC-BO-4Cl is therefore a good candidate for Q-PHJ OSCs. In this work, a D18:BTIC-BO-4Cl-based Q-PHJ device is fabricated. The exciton diffusion lengths of D18 and BTIC-BO-4Cl are in accord with the requirements of the Q-PHJ device and the efficiency of Q-PHJ device is as high as 17.60%. This study indicates that the Q-PHJ architecture can replace the BHJ architecture to produce excellent OSCs for certain unique donors and acceptors, providing an alternative approach to photovoltaic material design and device fabrication.

5.
Nanoscale ; 13(36): 15278-15284, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34486617

RESUMO

Because of suitable band gap and high mobility, two-dimensional transition metal dichalcogenide (TMD) materials are promising in future microelectronic devices. However, controllable p-type and n-type doping of TMDs is still a challenge. Herein, we develop a soft plasma doping concept and demonstrate both n-type and p-type doping for TMDs including MoS2 and WS2 through adjusting the plasma working parameters. In particular, p-type doping of MoS2 can be realized when the radio frequency (RF) power is relatively small and the processing time is short: the off-state current increases from ∼10-10 A to ∼10-8 A, the threshold voltage is positively shifted from -26.2 V to 8.3 V, and the mobility increases from 7.05 cm2 V-1 s-1 to 16.52 cm2 V-1 s-1. Under a relatively large RF power and long processing time, n-type doping was realized for MoS2: the threshold voltage was negatively shifted from 6.8 V to -13.3 V and the mobility is reduced from 10.32 cm2 V-1 s-1 to 3.2 cm2 V-1 s-1. For the former, suitable plasma treatment can promote the substitution of N elements for S vacancies and lead to p-type doping, thus reducing the defect density and increasing the mobility value. For the latter, due to excessive plasma treatment, more S vacancies will be produced, leading to heavier n-type doping as well as a decrease in mobility. We confirm the results by systematically analyzing the optical, compositional, thickness and structural characteristics of the samples before and after such soft plasma treatments via Raman, photoluminescence (PL), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) measurements. Due to its nondestructive and expandable nature and compatibility with the current microelectronics industry, this potentially generic method may be used as a reliable technology for the development of diverse and functional TMD-based devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA