Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217105

RESUMO

Inertial Navigation System (INS) is often combined with Global Navigation Satellite System (GNSS) to increase the positioning accuracy and continuity. In complex urban environments, GNSS/INS integrated systems suffer not only from dynamical model errors but also GNSS observation gross errors. However, it is hard to distinguish dynamical model errors from observation gross errors because the observation residuals are affected by both of them in a loosely-coupled integrated navigation system. In this research, an optimal Radial Basis Function (RBF) neural network-enhanced adaptive robust Kalman filter (KF) method is proposed to isolate and mitigate the influence of the two types of errors. In the proposed method, firstly a test statistic based on Mahalanobis distance is treated as judging index to achieve fault detection. Then, an optimal RBF neural network strategy is trained on-line by the optimality principle. The network's output will bring benefits in recognizing the above two kinds of filtering fault and the system is able to choose a robust or adaptive Kalman filtering method autonomously. A field vehicle test in urban areas with a low-cost GNSS/INS integrated system indicates that two types of errors simulated in complex urban areas have been detected, distinguished and eliminated with the proposed scheme, success rate reached up to 92%. In particular, we also find that the novel neural network strategy can improve the overall position accuracy during GNSS signal short-term outages.

2.
Sensors (Basel) ; 15(4): 8685-711, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25875191

RESUMO

The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA