Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Chem Rev ; 121(9): 5289-5335, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33886296

RESUMO

The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.

2.
IUBMB Life ; 68(6): 488-95, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27156582

RESUMO

PorB is a pan-Neisserial major outer membrane protein with a trimeric ß-barrel structure. Each monomer presents eight periplasmic turns and eight surface exposed loop regions with sequence variability. PorB induces activation of host cell responses via a TLR2-dependent mechanism likely mediated by electrostatic interactions between TLR2 and PorB surface exposed loops. Variability in the loop amino acid sequence is known to influence cell responses to PorB in vitro, particularly for the residues in L5 and L7. In this work, the sequence of the porB gene and the electrostatic surface charges of PorB from 35 invasive meningococcal isolates belonging to the main clonal complexes identified in Italy and from five carriage genomes available on the website http://pubmlst.org/neisseria/ were examined. Analysis of the porB encoding regions from the invasive meningococci has identified four new alleles and a potential association between porB alleles, serogroup, and clonal complexes. Through computer-based modeling and analysis of the electrostatic surface charges of PorB from these strains, loop charge segregation between PorB from invasive serogroups B and C was observed. Specifically, loops 1, 4, and 7 were negatively charged and L2 and L8 were mostly neutral in serogroup B isolates, while an overall homogeneous positive surface charge was present in PorB from invasive serogroup C strains. A higher PorB sequence variability was observed among carriage genomes, and a general prevalence of negative loop surface charges. The surface charge differences in PorB from serogroups B and C invasive and carriage strains may, in part, influence the outcomes of Neisseriae interactions with host cells. © 2016 IUBMB Life, 68(6):488-495, 2016.


Assuntos
Neisseria meningitidis/genética , Neisseria meningitidis/patogenicidade , Porinas/química , Alelos , Modelos Moleculares , Neisseria meningitidis/classificação , Porinas/genética , Porinas/metabolismo , Conformação Proteica , Sorogrupo
3.
J Struct Biol ; 185(3): 440-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361688

RESUMO

Among all Neisseriae species, Neisseria meningitidis and Neisseria gonorrhoeae are the only human pathogens, causative agents of bacterial meningitis and gonorrhoea, respectively. PorB, a pan-Neisseriae trimeric porin that mediates diffusive transport of essential molecules across the bacterial outer membrane, is also known to activate host innate immunity via Toll-like receptor 2 (TLR2)-mediated signaling. The molecular mechanism of PorB binding to TLR2 is not known, but it has been hypothesized that electrostatic interactions contribute to ligand/receptor binding. Strain-specific sequence variability in the surface-exposed loops of PorB which are potentially implicated in TLR2 binding, may explain the difference in TLR2-mediated cell activation in vitro by PorB homologs from the commensal Neisseriae lactamica and the pathogen N. meningitidis. Here, we report a comparative structural analysis of PorB from N. meningitidis serogroup B strain 8765 (63% sequence homology with PorB from N. meningitidis serogroup W135) and a mutant in which amino acid substitutions in the extracellular loop 7 lead to significantly reduced TLR2-dependent activity in vitro. We observe that this mutation both alters the loop conformation and causes dramatic changes of electrostatic surface charge, both of which may affect TLR2 recognition and signaling.


Assuntos
Neisseria meningitidis/metabolismo , Porinas/química , Porinas/metabolismo , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
4.
J Struct Biol ; 181(2): 185-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23159802

RESUMO

Acetate kinases (ACKs) are members of the acetate and sugar kinase/hsp70/actin (ASKHA) superfamily and catalyze the reversible phosphorylation of acetate, with ADP/ATP the most common phosphoryl acceptor/donor. While prokaryotic ACKs have been the subject of extensive biochemical and structural characterization, there is a comparative paucity of information on eukaryotic ACKs, and prior to this report, no structure of an ACK of eukaryotic origin was available. We determined the structures of ACKs from the eukaryotic pathogens Entamoeba histolytica and Cryptococcus neoformans. Each active site is located at an interdomain interface, and the acetate and phosphate binding pockets display sequence and structural conservation with their prokaryotic counterparts. Interestingly, the E. histolytica ACK has previously been shown to be pyrophosphate (PP(i))-dependent, and is the first ACK demonstrated to have this property. Examination of its structure demonstrates how subtle amino acid substitutions within the active site have converted cosubstrate specificity from ATP to PP(i) while retaining a similar backbone conformation. Differences in the angle between domains surrounding the active site suggest that interdomain movement may accompany catalysis. Taken together, these structures are consistent with the eukaryotic ACKs following a similar reaction mechanism as is proposed for the prokaryotic homologs.


Assuntos
Acetato Quinase/química , Cryptococcus neoformans/enzimologia , Entamoeba histolytica/enzimologia , Modelos Moleculares , Conformação Proteica , Acetato Quinase/genética , Acetatos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico/genética , Cristalografia por Raios X , Dados de Sequência Molecular , Fosfatos/metabolismo , Especificidade da Espécie , Especificidade por Substrato/genética
5.
Proteins ; 81(5): 830-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23255122

RESUMO

Neisseria meningitidis is the main causative agent of bacterial meningitis. In its outer membrane, the trimeric Neisserial porin PorB is responsible for the diffusive transport of essential hydrophilic solutes across the bilayer. Previous molecular dynamics simulations based on the recent crystal structure of PorB have suggested the presence of distinct solute translocation pathways through this channel. Although PorB has been electrophysiologically characterized as anion-selective, cation translocation through nucleotide-bound PorB during pathogenesis is thought to be instrumental for host cell death. As a result, we were particularly interested in further characterizing cation transport through the pore. We combined a structural approach with additional computational analysis. Here, we present two crystal structures of PorB at 2.1 and 2.65 Å resolution. The new structures display additional electron densities around the protruding loop 3 (L3) inside the pore. We show that these electron densities can be identified as monovalent cations, in our case Cs(+), which are tightly bound to the inner channel. Molecular dynamics simulations reveal further ion interactions and the free energy landscape for ions inside PorB. Our results suggest that the crystallographically identified locations of Cs(+) form a cation transport pathway inside the pore. This finding suggests how positively charged ions are translocated through PorB when the channel is inserted into mitochondrial membranes during Neisserial infection, a process which is considered to dissipate the mitochondrial transmembrane potential gradient and thereby induce apoptosis.


Assuntos
Césio/metabolismo , Neisseria meningitidis/química , Porinas/química , Sítios de Ligação , Cátions/metabolismo , Cristalografia por Raios X , Humanos , Transporte de Íons , Meningite Meningocócica/microbiologia , Simulação de Dinâmica Molecular , Neisseria meningitidis/metabolismo , Porinas/metabolismo , Termodinâmica
6.
Proc Natl Acad Sci U S A ; 107(15): 6811-6, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20351243

RESUMO

PorB is the second most prevalent outer membrane protein in Neisseria meningitidis. PorB is required for neisserial pathogenesis and can elicit a Toll-like receptor mediated host immune response. Here, the x-ray crystal structure of PorB has been determined to 2.3 A resolution. Structural analysis and cocrystallization studies identify three putative solute translocation pathways through the channel pore: One pathway transports anions nonselectively, one transports cations nonselectively, and one facilitates the specific uptake of sugars. During infection, PorB likely binds host mitochondrial ATP, and cocrystallization with the ATP analog AMP-PNP suggests that binding of nucleotides regulates these translocation pathways both by partial occlusion of the pore and by restricting the motion of a putative voltage gating loop. PorB is located on the surface of N. meningitidis and can be recognized by receptors of the host innate immune system. Features of PorB suggest that Toll-like receptor mediated recognition outer membrane proteins may be initiated with a nonspecific electrostatic attraction.


Assuntos
Neisseria meningitidis/metabolismo , Porinas/metabolismo , Ânions , Proteínas da Membrana Bacteriana Externa/química , Transporte Biológico , Carboidratos/química , Cristalografia por Raios X/métodos , Humanos , Imunidade Inata , Lipossomos/química , Modelos Moleculares , Conformação Molecular , Nucleotídeos/química , Porinas/química , Receptores Toll-Like/metabolismo
7.
Nat Chem ; 15(11): 1591-1598, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37414880

RESUMO

Allostery produces concerted functions of protein complexes by orchestrating the cooperative work between the constituent subunits. Here we describe an approach to create artificial allosteric sites in protein complexes. Certain protein complexes contain subunits with pseudo-active sites, which are believed to have lost functions during evolution. Our hypothesis is that allosteric sites in such protein complexes can be created by restoring the lost functions of pseudo-active sites. We used computational design to restore the lost ATP-binding ability of the pseudo-active site in the B subunit of a rotary molecular motor, V1-ATPase. Single-molecule experiments with X-ray crystallography analyses revealed that binding of ATP to the designed allosteric site boosts this V1's activity compared with the wild-type, and the rotation rate can be tuned by modulating ATP's binding affinity. Pseudo-active sites are widespread in nature, and our approach shows promise as a means of programming allosteric control over concerted functions of protein complexes.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Domínio Catalítico , Sítio Alostérico , Modelos Moleculares , ATPases Vacuolares Próton-Translocadoras/química , Trifosfato de Adenosina/química , Sítios de Ligação
8.
Structure ; 31(11): 1452-1462.e4, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37699394

RESUMO

Myelin protein zero (MPZ or P0) is a transmembrane protein which functions to glue membranes in peripheral myelin. Inter-membrane adhesion is mediated by homophilic interactions between the extracellular domains (ECDs) of MPZ. Single amino acid substitutions in an ECD cause demyelinating neuropathy, Charcot-Marie-Tooth disease (CMT), with unknown mechanisms. In this study, by using a novel assay system "nanomyelin," we revealed that a stacked-rings-like ECD-8-mer is responsible for membrane adhesion. Two inter-ECD interactions, cis and head-to-head, are essential to constituting the 8-mer and to gluing the membranes. This result was reinforced by the observation that the CMT-related N87H substitution at the cis interface abolished membrane-adhesion activity. In contrast, the CMT-related D32G and E68V variants retained membrane-stacking activity, whereas their thermal stability was lower than that of the WT. Reduced thermal stability may lead to impairment of the long-term stability of ECD and the layered membranes of myelin.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/genética , Proteína P0 da Mielina/genética , Substituição de Aminoácidos , Fenótipo , Mutação
9.
Methods Mol Biol ; 2524: 91-103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821465

RESUMO

Cell-free bioassays (CFBs) provide their own distinctive merits over cell-based bioassays (CBBs) including (i) rapid and on-site applicability, (ii) long-term utility, and (iii) bioanalytical versatility. The authors previously introduced a unique bioluminescent imaging probe for illuminating molecular tension appended by protein-protein interactions (PPIs) of interest. In this chapter, we exemplify that a full-length artificial luciferase is sandwiched between FRB (FKBP-rapamycin-binding domain of FKBP12-rapamycin-associated protein) and FKBP (FK506-binding protein) via minimal flexible linkers, named FRB-A23-FKBP. The rapamycin-activated PPIs between FRB and FKBP append molecular tension to the sandwiched luciferase, enhancing the enzymatic activity in a quantitative manner. The fusion protein, FRB-A23-FKBP, is three-step column-purified and the bioanalytical utility is characterized in various CFB conditions. This chapter guides the detailed protocols from the purification to the practical bioassays of FRB-A23-FKBP.


Assuntos
Sondas Moleculares , Sirolimo , Bioensaio , Luciferases/genética , Luciferases/metabolismo , Sondas Moleculares/metabolismo , Ligação Proteica , Proteínas de Ligação a Tacrolimo/metabolismo
10.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 1): 29-36, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439153

RESUMO

In 2003, a fully automated protein crystallization and monitoring system (PXS) was developed to support the structural genomics projects that were initiated in the early 2000s. In PXS, crystallization plates were automatically set up using the vapor-diffusion method, transferred to incubators and automatically observed according to a pre-set schedule. The captured images of each crystallization drop could be monitored through the internet using a web browser. While the screening throughput of PXS was very high, the demands of users have gradually changed over the ensuing years. To study difficult proteins, it has become important to screen crystallization conditions using small amounts of proteins. Moreover, membrane proteins have become one of the main targets for X-ray crystallography. Therefore, to meet the evolving demands of users, PXS was upgraded to PXS2. In PXS2, the minimum volume of the dispenser is reduced to 0.1 µl to minimize the amount of sample, and the resolution of the captured images is increased to five million pixels in order to observe small crystallization drops in detail. In addition to the 20°C incubators, a 4°C incubator was installed in PXS2 because crystallization results may vary with temperature. To support membrane-protein crystallization, PXS2 includes a procedure for the bicelle method. In addition, the system supports a lipidic cubic phase (LCP) method that uses a film sandwich plate and that was specifically designed for PXS2. These improvements expand the applicability of PXS2, reducing the bottleneck of X-ray protein crystallography.


Assuntos
Cristalização/instrumentação , Proteínas de Membrana/química , Automação Laboratorial , Cristalização/métodos , Desenho de Equipamento , Robótica , Temperatura , Gravação em Vídeo/instrumentação
11.
Biochim Biophys Acta Biomembr ; 1863(6): 183601, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33675718

RESUMO

Gram-negative bacteria cause the majority of highly drug-resistant bacterial infections. To cross the outer membrane of the complex Gram-negative cell envelope, antibiotics permeate through porins, trimeric channel proteins that enable the exchange of small polar molecules. Mutations in porins contribute to the development of drug-resistant phenotypes. In this work, we show that a single point mutation in the porin PorB from Neisseria meningitidis, the causative agent of bacterial meningitis, can strongly affect the binding and permeation of beta-lactam antibiotics. Using X-ray crystallography, high-resolution electrophysiology, atomistic biomolecular simulation, and liposome swelling experiments, we demonstrate differences in drug binding affinity, ion selectivity and drug permeability of PorB. Our work further reveals distinct interactions between the transversal electric field in the porin eyelet and the zwitterionic drugs, which manifest themselves under applied electric fields in electrophysiology and are altered by the mutation. These observations may apply more broadly to drug-porin interactions in other channels. Our results improve the molecular understanding of porin-based drug-resistance in Gram-negative bacteria.


Assuntos
Proteínas de Bactérias/química , Neisseria meningitidis/metabolismo , Porinas/química , Ampicilina/química , Ampicilina/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Farmacorresistência Bacteriana/efeitos dos fármacos , Lipossomos/química , Lipossomos/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Permeabilidade/efeitos dos fármacos , Porinas/genética , Porinas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
12.
J Phys Chem B ; 124(6): 990-1000, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31955569

RESUMO

We often encounter a case where two proteins, whose amino-acid sequences are similar, are quite different with regard to the thermostability. As a striking example, we consider the two seven-transmembrane proteins: recently discovered Rubrobacter xylanophilus rhodopsin (RxR) and long-known bacteriorhodopsin from Halobacterium salinarum (HsBR). They commonly function as a light-driven proton pump across the membrane. Though their sequence similarity and identity are ∼71 and ∼45%, respectively, RxR is much more thermostable than HsBR. In this study, we solve the three-dimensional structure of RxR using X-ray crystallography and find that the backbone structures of RxR and HsBR are surprisingly similar to each other: The root-mean-square deviation for the two structures calculated using the backbone Cα atoms of the seven helices is only 0.86 Å, which makes the large stability difference more puzzling. We calculate the thermostability measure and its energetic and entropic components for RxR and HsBR using our recently developed statistical-mechanical theory. The same type of calculation is independently performed for the portions playing essential roles in the proton-pumping function, helices 3 and 7, and their structural properties are related to the probable roles of water molecules in the proton-transporting mechanism. We succeed in elucidating how RxR realizes its exceptionally high stability with the original function being retained. This study provides an important first step toward the establishment of a method correlating microscopic, geometric characteristics of a protein with its thermodynamic properties and enhancing the thermostability through amino-acid mutations without vitiating the original function.


Assuntos
Actinobacteria/química , Halobacterium salinarum/química , Bombas de Próton/química , Rodopsinas Microbianas/química , Termodinâmica , Cristalografia por Raios X , Modelos Moleculares , Dobramento de Proteína , Solventes/química
13.
Biochem Biophys Res Commun ; 380(2): 338-42, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19171121

RESUMO

Tripartite efflux systems are responsible for the export of toxins across both the inner and outer membranes of gram negative bacteria. Previous work has indicated that EmrAB-TolC from Escherichia coli is such a tripartite system, comprised of EmrB an MFS transporter, EmrA, a membrane fusion protein and TolC, an outer membrane channel. The whole complex is predicted to form a continuous channel allowing direct export from the cytoplasm to the exterior of the cell. Little is known, however, about the interactions between the individual components of this system. Reconstitution of EmrA+EmrB resulted in co-elution of the two proteins from a gel filtration column indicating formation of the EmrAB complex. Electron microscopic single particle analysis of the reconstituted EmrAB complex revealed the presence of particles approximately 240x140A, likely to correspond to two EmrAB dimers in a back-to-back arrangement, suggesting the dimeric EmrAB form is the physiological state contrasting with the trimeric arrangement of the AcrAB-TolC system.


Assuntos
Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Multimerização Proteica , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Eletrônica , Conformação Proteica
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 10): 996-1000, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19851005

RESUMO

The Neisseria meningitidis outer membrane protein PorB was expressed in Escherichia coli and purified from inclusion bodies by denaturation in urea followed by refolding in buffered LDAO on a size-exclusion column. PorB has been crystallized in three different crystal forms: C222, R32 and P6(3). The C222 crystal form may contain either one or two PorB monomers in the asymmetric unit, while both the R32 and P6(3) crystal forms contained one PorB monomer in the asymmetric unit. Of the three, the P6(3) crystal form had the best diffraction quality, yielding data extending to 2.3 A resolution.


Assuntos
Porinas/química , Proteínas da Membrana Bacteriana Externa/química , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Porinas/biossíntese , Porinas/isolamento & purificação
15.
J Phys Chem B ; 123(4): 792-801, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30608169

RESUMO

For a comprehensive understanding of the thermodynamic state functions describing the stability of a protein, the influence of the intensive properties of temperature and pressure has to be known. With the zinc-finger-containing Kti11, we found a suitable protein for this purpose because folding and unfolding transitions occur at an experimentally accessible temperature (280-330 °K) and pressure (0.1-240 MPa) range. We solved the crystal structure of the apo form of Kti11 to reveal two disulfide bonds at the metal-binding site, which seals off a cavity in the ß-barrel part of the protein. From a generally applicable proton NMR approach, we could determine the populations of folded and unfolded chains under all conditions, leading to a hyperbolic pressure-temperature phase diagram rarely observed for proteins. A global fit of a two-state model to all derived populations disclosed reliable values for the change in Gibbs free energy, volume, entropy, heat capacity, compressibility, and thermal expansion upon unfolding. The unfolded state of apoKti11 has a lower compressibility compared to the native state and a smaller volume at ambient pressure. Therefore, a pressure increase up to 200 MPa reduces the population of the native state, and above this value, the native population increases again. Pressure-induced chemical-shift changes in two-dimensional 1H-15N NMR spectra could be employed for a molecular interpretation of the thermodynamic properties of apoKti11.


Assuntos
Apoproteínas/química , Ressonância Magnética Nuclear Biomolecular , Pressão , Temperatura , Dedos de Zinco , Cristalografia por Raios X , Modelos Moleculares
16.
Sci Rep ; 9(1): 1264, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718567

RESUMO

The permeation of most antibiotics through the outer membrane of Gram-negative bacteria occurs through porin channels. To design drugs with increased activity against Gram-negative bacteria in the face of the antibiotic resistance crisis, the strict constraints on the physicochemical properties of the permeants imposed by these channels must be better understood. Here we show that a combination of high-resolution electrophysiology, new noise-filtering analysis protocols and atomistic biomolecular simulations reveals weak binding events between the ß-lactam antibiotic ampicillin and the porin PorB from the pathogenic bacterium Neisseria meningitidis. In particular, an asymmetry often seen in the electrophysiological characteristics of ligand-bound channels is utilised to characterise the binding site and molecular interactions in detail, based on the principles of electro-osmotic flow through the channel. Our results provide a rationale for the determinants that govern the binding and permeation of zwitterionic antibiotics in porin channels.


Assuntos
Ampicilina/metabolismo , Antibacterianos/metabolismo , Neisseria meningitidis/metabolismo , Porinas/metabolismo , Ampicilina/farmacocinética , Antibacterianos/farmacocinética , Humanos , Meningite Meningocócica/tratamento farmacológico , Meningite Meningocócica/microbiologia , Modelos Moleculares , Neisseria meningitidis/efeitos dos fármacos , Permeabilidade , beta-Lactamas/metabolismo , beta-Lactamas/farmacocinética
17.
Methods Mol Biol ; 1700: 97-109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177828

RESUMO

A major hurdle in membrane protein crystallography is generating crystals diffracting sufficiently for structure determination. This is often attributed not only to the difficulty of obtaining functionally active protein in mg amounts but also to the intrinsic flexibility of its multiple conformations. The cocrystallization of membrane proteins with antibody fragments has been reported as an effective approach to improve the diffraction quality of membrane protein crystals by limiting the intrinsic flexibility. Isolating suitable antibody fragments recognizing a single conformation of a native membrane protein is not a straightforward task. However, by a systematic screening approach, the time to obtain suitable antibody fragments and consequently the chance of obtaining diffracting crystals can be reduced. In this chapter, we describe a protocol for the generation of Fab fragments recognizing the native conformation of a major facilitator superfamily (MFS)-type MDR transporter MdfA from Escherichia coli. We confirmed that the use of Fab fragments was efficient for stabilization of MdfA and improvement of its crystallization properties.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Proteínas de Membrana Transportadoras/química , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/química , Proteínas de Escherichia coli/imunologia , Fragmentos Fab das Imunoglobulinas/química , Proteínas de Membrana Transportadoras/imunologia , Conformação Molecular , Estabilidade Proteica , Especificidade por Substrato
18.
Nat Commun ; 9(1): 4005, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275448

RESUMO

Multidrug resistance (MDR) poses a major challenge to medicine. A principle cause of MDR is through active efflux by MDR transporters situated in the bacterial membrane. Here we present the crystal structure of the major facilitator superfamily (MFS) drug/H+ antiporter MdfA from Escherichia coli in an outward open conformation. Comparison with the inward facing (drug binding) state shows that, in addition to the expected change in relative orientations of the N- and C-terminal lobes of the antiporter, the conformation of TM5 is kinked and twisted. In vitro reconstitution experiments demonstrate the importance of selected residues for transport and molecular dynamics simulations are used to gain insights into antiporter switching. With the availability of structures of alternative conformational states, we anticipate that MdfA will serve as a model system for understanding drug efflux in MFS MDR antiporters.


Assuntos
Antiporters/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Substituição de Aminoácidos , Antiporters/genética , Antiporters/metabolismo , Membrana Celular/metabolismo , Cloranfenicol/metabolismo , Cristalografia por Raios X , Resistência a Múltiplos Medicamentos/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Transporte Proteico , Relação Estrutura-Atividade
19.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 7): 423-430, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28695852

RESUMO

The active efflux of antibiotics by multidrug-resistance (MDR) transporters is a major pathway of drug resistance and complicates the clinical treatment of bacterial infections. MdfA is a member of the major facilitator superfamily (MFS) from Escherichia coli and provides resistance to a wide variety of dissimilar toxic compounds, including neutral, cationic and zwitterionic substances. The 12-transmembrane-helix MdfA was expressed as a GFP-octahistidine fusion protein with a TEV protease cleavage site. Following tag removal, MdfA was purified using two chromatographic steps, complexed with a Fab fragment and further purified using size-exclusion chromatography. MdfA and MdfA-Fab complexes were subjected to both vapour-diffusion and lipidic cubic phase (LCP) crystallization techniques. Vapour-diffusion-grown crystals were of type II, with poor diffraction behaviour and weak crystal contacts. LCP lipid screening resulted in type I crystals that diffracted to 3.4 Šresolution and belonged to the hexagonal space group P6122.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas Recombinantes de Fusão/química , Motivos de Aminoácidos , Sítios de Ligação , Cromatografia em Gel , Clonagem Molecular , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla , Endopeptidases/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fab das Imunoglobulinas/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
20.
Appl Biochem Biotechnol ; 175(6): 2907-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575589

RESUMO

Bacterial porins are major outer membrane proteins that function as essential solute transporters between the bacteria and the extracellular environment. Structural features of porins are also recognized by eukaryotic cell receptors involved in innate and adaptive immunity. To better investigate the function of porins, proper refolding is necessary following purification from inclusion bodies [1, 2]. Using a single-step size exclusion chromatographic method, we have purified three major porins from pathogenic bacteria, the OmpP2 (P2) from Haemophilus influenzae, FomA from Fusobacterium nucleatum and PorB from Neisseria meningitidis, at high yield and report their unique solute transport activity with size exclusion limit. Furthermore, we have optimized their purification method and achieved improvement of their thermostability for facilitating functional and structural analyses.


Assuntos
Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Cromatografia em Gel/métodos , Haemophilus influenzae/química , Neisseria meningitidis/química , Porinas/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Fusobacterium nucleatum/química , Fusobacterium nucleatum/metabolismo , Haemophilus influenzae/metabolismo , Neisseria meningitidis/metabolismo , Porinas/química , Porinas/metabolismo , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA