Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Cell ; 174(6): 1450-1464.e23, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100184

RESUMO

Synapses are fundamental units of communication in the brain. The prototypical synapse-organizing complex neurexin-neuroligin mediates synapse development and function and is central to a shared genetic risk pathway in autism and schizophrenia. Neurexin's role in synapse development is thought to be mediated purely by its protein domains, but we reveal a requirement for a rare glycan modification. Mice lacking heparan sulfate (HS) on neurexin-1 show reduced survival, as well as structural and functional deficits at central synapses. HS directly binds postsynaptic partners neuroligins and LRRTMs, revealing a dual binding mode involving intrinsic glycan and protein domains for canonical synapse-organizing complexes. Neurexin HS chains also bind novel ligands, potentially expanding the neurexin interactome to hundreds of HS-binding proteins. Because HS structure is heterogeneous, our findings indicate an additional dimension to neurexin diversity, provide a molecular basis for fine-tuning synaptic function, and open therapeutic directions targeting glycan-binding motifs critical for brain development.


Assuntos
Heparitina Sulfato/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular Neuronais/antagonistas & inibidores , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Glicopeptídeos/análise , Heparitina Sulfato/química , Humanos , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa/antagonistas & inibidores , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Alinhamento de Sequência
2.
Mol Psychiatry ; 29(5): 1338-1349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38243072

RESUMO

Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglial Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglial BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administering doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological function in the mPFC, whereas normalizing BDNF from later ages (p45-p50) did not normalize electrophysiological abnormalities in the mPFC, despite the improved sociability. To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible proxy for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. In summary, our study demonstrated the influence of microglial BDNF on the development of experience-dependent social behaviors in mice, emphasizing its specific impact on the maturation of mPFC function, particularly during the juvenile period. Furthermore, our results propose a translational implication by suggesting a potential link between BDNF secretion from macrophages and childhood experiences in humans.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Camundongos Transgênicos , Microglia , Neurônios , Córtex Pré-Frontal , Comportamento Social , Animais , Feminino , Humanos , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Isolamento Social/psicologia
3.
J Neurosci ; 43(47): 7982-7999, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37734949

RESUMO

Neuronal activity is modulated not only by inputs from other neurons but also by various factors, such as bioactive substances. Noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons) are involved in diverse physiological functions, including sleep/wakefulness and stress responses. Previous studies have identified various substances and receptors that modulate LC-NA neuronal activity through techniques including electrophysiology, calcium imaging, and single-cell RNA sequencing. However, many substances with unknown physiological significance have been overlooked. Here, we established an efficient screening method for identifying substances that modulate LC-NA neuronal activity through intracellular calcium ([Ca2+]i) imaging using brain slices. Using both sexes of mice, we screened 53 bioactive substances, and identified five novel substances: gastrin-releasing peptide, neuromedin U, and angiotensin II, which increase [Ca2+]i, and pancreatic polypeptide and prostaglandin D2, which decrease [Ca2+]i Among them, neuromedin U induced the greatest response in female mice. In terms of the duration of [Ca2+]i change, we focused on prostaglandin E2 (PGE2), since it induces a long-lasting decrease in [Ca2+]i via the EP3 receptor. Conditional knock-out of the receptor in LC-NA neurons resulted in increased depression-like behavior, prolonged wakefulness in the dark period, and increased [Ca2+]i after stress exposure. Our results demonstrate the effectiveness of our screening method for identifying substances that modulate a specific neuronal population in an unbiased manner and suggest that stress-induced prostaglandin E2 can suppress LC-NA neuronal activity to moderate the behavioral response to stressors. Our screening method will contribute to uncovering previously unknown physiological functions of uncharacterized bioactive substances in specific neuronal populations.SIGNIFICANCE STATEMENT Bioactive substances modulate the activity of specific neuronal populations. However, since only a limited number of substances with predicted effects have been investigated, many substances that may modulate neuronal activity have gone unrecognized. Here, we established an unbiased method for identifying modulatory substances by measuring the intracellular calcium signal, which reflects neuronal activity. We examined noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons), which are involved in diverse physiological functions. We identified five novel substances that modulate LC-NA neuronal activity. We also found that stress-induced prostaglandin E2 (PGE2) may suppress LC-NA neuronal activity and influence behavioral outcomes. Our screening method will help uncover previously overlooked functions of bioactive substances and provide insight into unrecognized roles of specific neuronal populations.


Assuntos
Neurônios Adrenérgicos , Locus Cerúleo , Masculino , Camundongos , Feminino , Animais , Locus Cerúleo/fisiologia , Cálcio/farmacologia , Norepinefrina/farmacologia , Prostaglandinas
4.
J Neurochem ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39233334

RESUMO

Oligodendrocyte (OL) differentiation from oligodendrocyte precursor cells (OPCs) is considered to result in two populations: premyelinating and myelinating OLs. Recent single-cell RNA sequence data subdivided these populations into newly formed (NFOLs), myelin-forming (MFOLs), and mature (MOLs) oligodendrocytes. However, which newly proposed population corresponds to premyelinating or myelinating OLs is unknown. We focused on the NFOL-specific long non-coding oligodendrocyte 1 gene (LncOL1) and sought to label NFOLs under the control of the LncOL1 promoter using a tetracycline-controllable gene induction system. We demonstrated that LncOL1 was expressed by premyelinating OLs and that the MFOL-specific gene, Ctps, was not, indicating that NFOLs correspond to premyelinating OLs and that MFOLs and MOLs correspond to myelinating OLs. We then generated a LncOL1-tTA mouse in which a tetracycline transactivator (tTA) cassette was inserted downstream from the LncOL1 transcription initiation site. By crossing the LncOL1-tTA mice with tetO reporter mice, we generated LncOL1-tTA::tetO-yellow fluorescent protein (YFP) double-transgenic (LncOL1-YFP) mice. Although LncOL1 is non-coding, YFP was detected in LncOL1-YFP mice, indicating successful tTA translation. Unexpectedly, we found that the morphology of LncOL1-tTA-driven YFP+ cells was distinct from that of LncOL1+ premyelinating OLs and that the labeled cells instead appeared as myelinating OLs. We demonstrated from their RNA expression that YFP-labeled OLs were MFOLs, but not MOLs. Using the unique property of delayed YFP induction, we sought to determine whether MFOLs are constantly supplied from OPCs and differentiate into MOLs, or whether MFOLs pause their differentiation and sustain this stage in the adult brain. To achieve this objective, we irradiated adult LncOL1-YFP brains with X-rays to deplete dividing OPCs and their progeny. The irradiation extinguished YFP-labeled OLs, indicating that adult OPCs differentiated into MOLs during a single period. We established a new transgenic mouse line that genetically labels MFOLs, providing a reliable tool for investigating the dynamics of adult oligodendrogenesis.

5.
J Neurochem ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238933

RESUMO

Depression is a highly prevalent and disabling psychiatric disorder. The hippocampus, which plays a central role in mood regulation and memory, has received considerable attention in depression research. Electroconvulsive therapy (ECT) is the most effective treatment for severe pharmacotherapy-resistant depression. Although the working mechanism of ECT remains unclear, recent magnetic resonance imaging (MRI) studies have consistently reported increased hippocampal volumes following ECT. The clinical implications of these volumetric increases and the specific cellular and molecular significance are not yet fully understood. This narrative review brings together evidence from animal models and human studies to provide a detailed examination of hippocampal volumetric increases following ECT. In particular, our preclinical MRI research using a mouse model is consistent with human findings, demonstrating a marked increase in hippocampal volume following ECT. Notable changes were observed in the ventral hippocampal CA1 region, including dendritic growth and increased synaptic density at excitatory synapses. Interestingly, inhibition of neurogenesis did not affect the ECT-related hippocampal volumetric increases detected on MRI. However, it remains unclear whether these histological and volumetric changes would be correlated with the clinical effect of ECT. Hence, future research on the relationships between cellular changes, ECT-related brain volumetric changes, and antidepressant effect could benefit from a bidirectional translational approach that integrates human and animal models. Such translational research may provide important insights into the mechanisms and potential biomarkers associated with ECT-induced hippocampal volumetric changes, thereby advancing our understanding of ECT for the treatment of depression.

6.
Microcirculation ; : e12885, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283679

RESUMO

OBJECTIVE: This study aimed to examine the spatiotemporal coherence of capillary lumen fluctuations in relation to spatial variations in the pericyte lining in the cortex of anesthetized mice. METHODS: Two-photon microscopic angiography data (previously published) were reanalyzed, and spatial variations in capillary diameter fluctuations at rest and in capillary lining with vascular mural cells were measured along capillary centerlines. RESULTS: Relatively large diameters of the capillaries (5.5 µm) coincided with a dense pericyte lining, while small capillaries (4.3 µm) had a sparse pericyte lining. Temporal variations had a frequency of about 0.1 Hz with an amplitude of 0.5 µm, which were negatively correlated with pericyte lining density. Spatial frequency analysis further revealed a common pattern of spatial variations in capillary diameter and pericyte lining, but temporal variations differed. The temporal variations in capillary lumens were locally distinct from those in neighboring locations, suggesting intrinsic fluctuations independent of the pericyte lining. CONCLUSIONS: Capillary lumens in the brain exhibit slow microfluctuations that are independent of pericyte lining. These microfluctuations could affect the distribution of flowing blood cells and may be important for homogenizing their distribution in capillary networks.

7.
Brain Behav Immun ; 121: 122-141, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38986725

RESUMO

Multiple system atrophy (MSA) is a severe α-synucleinopathy facilitated by glial reactions; the cerebellar variant (MSA-C) preferentially involves olivopontocerebellar fibres with conspicuous demyelination. A lack of aggressive models that preferentially involve olivopontocerebellar tracts in adulthood has hindered our understanding of the mechanisms of demyelination and neuroaxonal loss, and thus the development of effective treatments for MSA. We therefore aimed to develop a rapidly progressive mouse model that recaptures MSA-C pathology. We crossed Plp1-tTA and tetO-SNCA*A53T mice to generate Plp1-tTA::tetO-SNCA*A53T bi-transgenic mice, in which human A53T α-synuclein-a mutant protein with enhanced aggregability-was specifically produced in the oligodendrocytes of adult mice using Tet-Off regulation. These bi-transgenic mice expressed mutant α-synuclein from 8 weeks of age, when doxycycline was removed from the diet. All bi-transgenic mice presented rapidly progressive motor deterioration, with wide-based ataxic gait around 22 weeks of age and death around 30 weeks of age. They also had prominent demyelination in the brainstem/cerebellum. Double immunostaining demonstrated that myelin basic protein was markedly decreased in areas in which SM132, an axonal marker, was relatively preserved. Demyelinating lesions exhibited marked ionised calcium-binding adaptor molecule 1-, arginase-1-, and toll-like receptor 2-positive microglial reactivity and glial fibrillary acidic protein-positive astrocytic reactivity. Microarray analysis revealed a strong inflammatory response and cytokine/chemokine production in bi-transgenic mice. Neuronal nuclei-positive neuronal loss and patchy microtubule-associated protein 2-positive dendritic loss became prominent at 30 weeks of age. However, a perceived decrease in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta in bi-transgenic mice compared with wild-type mice was not significant, even at 30 weeks of age. Wild-type, Plp1-tTA, and tetO-SNCA*A53T mice developed neither motor deficits nor demyelination. In bi-transgenic mice, double immunostaining revealed human α-synuclein accumulation in neurite outgrowth inhibitor A (Nogo-A)-positive oligodendrocytes beginning at 9 weeks of age; its expression was further increased at 10 to 12 weeks, and these increased levels were maintained at 12, 24, and 30 weeks. In an α-synuclein-proximity ligation assay, α-synuclein oligomers first appeared in brainstem oligodendrocytes as early as 9 weeks of age; they then spread to astrocytes, neuropil, and neurons at 12 and 16 weeks of age. α-Synuclein oligomers in the brainstem neuropil were most abundant at 16 weeks of age and decreased thereafter; however, those in Purkinje cells successively increased until 30 weeks of age. Double immunostaining revealed the presence of phosphorylated α-synuclein in Nogo-A-positive oligodendrocytes in the brainstem/cerebellum as early as 9 weeks of age. In quantitative assessments, phosphorylated α-synuclein gradually and successively accumulated at 12, 24, and 30 weeks in bi-transgenic mice. By contrast, no phosphorylated α-synuclein was detected in wild-type, tetO-SNCA*A53T, or Plp1-tTA mice at any age examined. Pronounced demyelination and tubulin polymerisation, promoting protein-positive oligodendrocytic loss, was closely associated with phosphorylated α-synuclein aggregates at 24 and 30 weeks of age. Early inhibition of mutant α-synuclein expression by doxycycline diet at 23 weeks led to fully recovered demyelination; inhibition at 27 weeks led to persistent demyelination with glial reactions, despite resolving phosphorylated α-synuclein aggregates. In conclusion, our bi-transgenic mice exhibited progressively increasing demyelination and neuroaxonal loss in the brainstem/cerebellum, with rapidly progressive motor deterioration in adulthood. These mice showed marked microglial and astrocytic reactions with inflammation that was closely associated with phosphorylated α-synuclein aggregates. These features closely mimic human MSA-C pathology. Notably, our model is the first to suggest that α-synuclein oligomers may spread from oligodendrocytes to neurons in transgenic mice with human α-synuclein expression in oligodendrocytes. This model of MSA is therefore particularly useful for elucidating the in vivo mechanisms of α-synuclein spreading from glia to neurons, and for developing therapies that target glial reactions and/or α-synuclein oligomer spreading and aggregate formation in MSA.


Assuntos
Atrofia de Múltiplos Sistemas , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Cerebelo/metabolismo , Cerebelo/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Fosforilação
8.
Cell ; 138(5): 976-89, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19737523

RESUMO

Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Assuntos
Apetite , Densidade Óssea , Metabolismo Energético , Leptina/metabolismo , Serotonina/metabolismo , Tronco Encefálico/metabolismo , Hipotálamo/metabolismo , Receptores para Leptina/metabolismo , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33452135

RESUMO

Astrocytes play a key role in brain homeostasis and functions such as memory. Specifically, astrocytes express multiple receptors that transduce signals via the second messenger cAMP. However, the involvement of astrocytic cAMP in animal behavior and the underlying glial-neuronal interactions remains largely unknown. Here, we show that an increase in astrocytic cAMP is sufficient to induce synaptic plasticity and modulate memory. We developed a method to increase astrocytic cAMP levels in vivo using photoactivated adenylyl cyclase and found that increased cAMP in hippocampal astrocytes at different time points facilitated memory formation but interrupted memory retention via NMDA receptor-dependent plasticity. Furthermore, we found that the cAMP-induced modulation of memory was mediated by the astrocyte-neuron lactate shuttle. Thus, our study unveils a role of astrocytic cAMP in brain function by providing a tool to modulate astrocytic cAMP in vivo.


Assuntos
Adenilil Ciclases/genética , Astrócitos/metabolismo , AMP Cíclico/metabolismo , Memória/fisiologia , Plasticidade Neuronal/genética , Neurônios/metabolismo , Adenilil Ciclases/metabolismo , Animais , Astrócitos/citologia , Comunicação Celular , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Ácido Láctico/metabolismo , Luz , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Optogenética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Técnicas Estereotáxicas , Sinapses/metabolismo , Fatores de Tempo
10.
BMC Surg ; 24(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166905

RESUMO

BACKGROUND: The effect of laparoscopic surgery on short-term outcomes in colorectal cancer patients over 90 years old has remained unclear. METHODS: We reviewed 87 colorectal cancer patients aged over 90 years who underwent surgery between 2016 and 2022. Patients were divided into an open surgery group (n = 22) and a laparoscopic surgery group (n = 65). The aim of this study was to investigate the effect of laparoscopic surgery on postoperative outcome in elderly colorectal cancer patients, as compared to open surgery. RESULTS: Seventy-eight patients (89.7%) had comorbidities. Frequency of advanced T stage was lower with laparoscopic surgery (p = 0.021). Operation time was longer (open surgery 146 min vs. laparoscopic surgery 203 min; p = 0.002) and blood loss was less (105 mL vs. 20 mL, respectively; p < 0.001) with laparoscopic surgery. Length of hospitalization was longer with open surgery (22 days vs. 18 days, respectively; p = 0.007). Frequency of infectious complications was lower with laparoscopic surgery (18.5%) than with open surgery (45.5%; p = 0.021). Multivariate analysis revealed open surgery (p = 0.026; odds ratio, 3.535; 95% confidence interval, 1.159-10.781) as an independent predictor of postoperative infectious complications. CONCLUSIONS: Laparoscopic colorectal resection for patients over 90 years old is a useful procedure that reduces postoperative infectious complications.


Assuntos
Neoplasias Colorretais , Laparoscopia , Idoso de 80 Anos ou mais , Humanos , Colectomia/efeitos adversos , Colectomia/métodos , Neoplasias Colorretais/cirurgia , Japão/epidemiologia , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Resultado do Tratamento
11.
J Neurosci ; 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35970565

RESUMO

Dorsal raphe (DR) 5-HT neurons regulate sleep-wake transitions. Previous studies demonstrated that single-unit activity of DR 5-HT neurons is high during wakefulness, decreases during non-rapid eye movement (NREM) sleep, and ceases during rapid eye movement (REM) sleep. However, characteristics of the population-level activity of DR 5-HT neurons, which influence the entire brain, are largely unknown. Here, we measured population activities of 5-HT neurons in the male and female mouse DR across the sleep-wake cycle by ratiometric fiber photometry. We found a slow oscillatory activity of compound intracellular Ca2+ signals during NREM sleep. The trough of the concave 5-HT activity increased across sleep progression, but 5-HT activity always returned to that seen during the wake period. When the trough reached a minimum and remained there, REM sleep was initiated. We also found a unique coupling of the oscillatory 5-HT activity and wide-band EEG power fluctuation. Furthermore, optogenetic activation of 5-HT neurons during NREM sleep triggered a high EMG power and induced wakefulness, demonstrating a causal role of 5-HT neuron activation. Optogenetic inhibition induced REM sleep or sustained NREM, with an EEG power increase and EEG fluctuation, and pharmacological silencing of 5-HT activity using a selective serotonin reuptake inhibitor led to sustained NREM, with an EEG power decrease and EEG fluctuation. These inhibitory manipulations supported the association between oscillatory 5-HT activity and EEG fluctuation. We propose that NREM sleep is not a monotonous state, but rather it contains dynamic changes that coincide with the oscillatory population-level activity of DR 5-HT neurons.SIGNIFICANT STATEMENTPrevious studies have demonstrated single-cell 5-HT neuronal activity across sleep-wake conditions. However, population-level activities of these neurons are not well understood. We monitored dorsal raphe (DR) 5-HT population activity using a fiber photometry system in mice and found that activity was highest during wakefulness and lowest during rapid eye movement (REM) sleep. Surprisingly, during non-REM sleep, the 5-HT population activity decreased with an oscillatory pattern, coinciding with EEG fluctuations. EEG fluctuations persisted when DR 5-HT neuron activity was silenced by either optogenetic or pharmacological interventions during non-REM sleep, suggesting an association between the two. Although oscillatory DR 5-HT neuron activity did not generate EEG fluctuations, it provides evidence that non-REM sleep exhibits at least binary states.

12.
Glia ; 71(2): 317-333, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36165697

RESUMO

Nerve/glial antigen 2 (NG2) is a protein marker of NG2 glia and mural cells, and NG2 promoter activity is utilized to target these cells. However, the NG2 promoter cannot target NG2 glia and mural cells separately. This has been an obstacle for NG2 glia-specific manipulation. Here, we developed transgenic mice in which either cell type can be targeted using the NG2 promoter. We selected a tetracycline-controllable gene induction system for cell type-specific transgene expression, and generated NG2-tetracycline transactivator (tTA) transgenic lines. We crossed tTA lines with the tetO-ChR2 (channelrhodopsin-2)-EYFP line to characterize tTA-dependent transgene induction. We isolated two unique NG2-tTA mouse lines: one that induced ChR2-EYFP only in mural cells, likely due to the chromosomal position effect of NG2-tTA insertion, and the other that induced it in both cell types. We then applied a Cre-mediated set-subtraction strategy to the latter case and eliminated ChR2-EYFP from mural cells, resulting in NG2 glia-specific transgene induction. We further demonstrated that tTA-dependent ChR2 expression could manipulate cell function. Optogenetic mural cell activation decreased cerebral blood flow, as previously reported, indicating that tTA-mediated ChR2 expression was sufficient to impact cellular function. ChR2-mediated depolarization was observed in NG2 glia in acute hippocampal slices. In addition, ChR2-mediated depolarization of NG2 glia inhibited their proliferation but promoted their differentiation in juvenile mice. Since the tTA-tetO combination is expandable, the mural cell-specific NG2-tTA line and the NG2 glia-specific NG2-tTA line will permit us to conduct observational and manipulation studies to examine in vivo function of these cells separately.


Assuntos
Neuroglia , Optogenética , Animais , Camundongos , Neuroglia/metabolismo , Camundongos Transgênicos , Antígenos/genética , Antígenos/metabolismo , Tetraciclinas/metabolismo
13.
Stroke ; 54(8): 2135-2144, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37309687

RESUMO

BACKGROUND: Cerebral microvascular obstruction is critically involved in recurrent stroke and decreased cerebral blood flow with age. The obstruction must occur in the capillary with a greater resistance to perfusion pressure through the microvascular networks. However, little is known about the relationship between capillary size and embolism formation. This study aimed to determine whether the capillary lumen space contributes to the development of microcirculation embolism. METHODS: To spatiotemporally manipulate capillary diameters in vivo, transgenic mice expressing the light-gated cation channel protein ChR2 (channelrhodopsin-2) in mural cells were used. The spatiotemporal changes in the regional cerebral blood flow in response to the photoactivation of ChR2 mural cells were first characterized using laser speckle flowgraphy. Capillary responses to optimized photostimulation were then examined in vivo using 2-photon microscopy. Finally, microcirculation embolism due to intravenously injected fluorescent microbeads was compared under conditions with or without photoactivation of ChR2 mural cells. RESULTS: Following transcranial photostimulation, the stimulation intensity-dependent decrease in cerebral blood flow centered at the irradiation was observed (14%-49% decreases relative to the baseline). The cerebrovascular response to photostimulation showed significant constriction of the cerebral arteries and capillaries but not of the veins. As a result of vasoconstriction, a temporal stall of red blood cell flow occurred in the capillaries of the venous sides. The 2-photon excitation of a single ChR2 pericyte demonstrated the partial shrinkage of capillaries (7% relative to the baseline) around the stimulated cell. With the intravenous injection of microbeads, the occurrence of microcirculation embolism was significantly enhanced (11% increases compared to the control) with photostimulation. CONCLUSIONS: Capillary narrowing increases the risk of developing microcirculation embolism in the venous sides of the cerebral capillaries.


Assuntos
Encéfalo , Capilares , Circulação Cerebrovascular , Embolia , Microcirculação , Animais , Camundongos , Encéfalo/irrigação sanguínea , Capilares/patologia , Capilares/fisiopatologia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Embolia/patologia , Embolia/fisiopatologia , Lasers , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Pericitos , Acidente Vascular Cerebral , Vasoconstrição
14.
Eur J Neurosci ; 58(12): 4502-4522, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36843200

RESUMO

The greater the reward expectations are, the more different the brain's physiological response will be. Although it is well-documented that better-than-expected outcomes are encoded quantitatively via midbrain dopaminergic (DA) activity, it has been less addressed experimentally whether worse-than-expected outcomes are expressed quantitatively as well. We show that larger reward expectations upon unexpected reward omissions are associated with the preceding slower rise and following larger decrease (DA dip) in the DA concentration at the ventral striatum of mice. We set up a lever press task on a fixed ratio (FR) schedule requiring five lever presses as an effort for a food reward (FR5). The mice occasionally checked the food magazine without a reward before completing the task. The percentage of this premature magazine entry (PME) increased as the number of lever presses approached five, showing rising expectations with increasing proximity to task completion, and hence greater reward expectations. Fibre photometry of extracellular DA dynamics in the ventral striatum using a fluorescent protein (genetically encoded GPCR activation-based DA sensor: GRABDA2m ) revealed that the slow increase and fast decrease in DA levels around PMEs were correlated with the PME percentage, demonstrating a monotonic relationship between the DA dip amplitude and degree of expectations. Computational modelling of the lever press task implementing temporal difference errors and state transitions replicated the observed correlation between the PME frequency and DA dip amplitude in the FR5 task. Taken together, these findings indicate that the DA dip amplitude represents the degree of reward expectations monotonically, which may guide behavioural adjustment.


Assuntos
Dopamina , Estriado Ventral , Animais , Camundongos , Condicionamento Operante/fisiologia , Dopamina/metabolismo , Alimentos , Mesencéfalo/metabolismo , Recompensa , Estriado Ventral/metabolismo
15.
Cell ; 135(5): 825-37, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041748

RESUMO

Loss- and gain-of-function mutations in the broadly expressed gene Lrp5 affect bone formation, causing osteoporosis and high bone mass, respectively. Although Lrp5 is viewed as a Wnt coreceptor, osteoblast-specific disruption of beta-Catenin does not affect bone formation. Instead, we show here that Lrp5 inhibits expression of Tph1, the rate-limiting biosynthetic enzyme for serotonin in enterochromaffin cells of the duodenum. Accordingly, decreasing serotonin blood levels normalizes bone formation and bone mass in Lrp5-deficient mice, and gut- but not osteoblast-specific Lrp5 inactivation decreases bone formation in a beta-Catenin-independent manner. Moreover, gut-specific activation of Lrp5, or inactivation of Tph1, increases bone mass and prevents ovariectomy-induced bone loss. Serotonin acts on osteoblasts through the Htr1b receptor and CREB to inhibit their proliferation. By identifying duodenum-derived serotonin as a hormone inhibiting bone formation in an Lrp5-dependent manner, this study broadens our understanding of bone remodeling and suggests potential therapies to increase bone mass.


Assuntos
Duodeno/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Osteogênese , Serotonina/metabolismo , Animais , Proteína de Ligação a CREB/metabolismo , Feminino , Proteínas Relacionadas a Receptor de LDL/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Receptor 5-HT1B de Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo
16.
Int J Colorectal Dis ; 38(1): 101, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37069408

RESUMO

PURPOSE: Several guidelines have recommended surgical resection for localized peritoneal metastases, but the prognosis remains poor. In addition, the efficacy of adjuvant chemotherapy (AC) after curative resection is under debate. The present study compared long-term outcomes between curative and non-curative resection and evaluated the effects of AC after curative resection. METHODS: Using a multicenter database, we retrospectively reviewed 123 colorectal cancer patients with peritoneal metastases between April 2016 and December 2021. Of these patients, 49 underwent curative resection, and 74 underwent non-curative resection. RESULTS: The frequency of broad metastases was lower in the curative resection group (8.2%) than in the non-curative resection group (43.2%, p < 0.001). Among all patients, 5-year overall survival rate was higher in the curative resection group (43.0%) than in the non-curative resection group (7.3%, p = 0.004). Among patients who underwent curative resection, 5-year overall survival rate was significantly higher in the AC group (48.2%) than in the non-AC group (38.1%, p = 0.037). Multivariate analysis of all patients revealed pathological N status and non-curative resection as independent predictors of overall survival. In patients who underwent curative resection, advanced age was an independent predictor of relapse-free survival, and AC was an independent predictor of overall survival. CONCLUSION: This multicenter study of colorectal cancer patients with peritoneal metastases revealed that prognosis was more favorable for curable cases than for non-curable cases. Prognosis was more favorable in the AC group than in the non-AC group after curative resection.


Assuntos
Neoplasias Colorretais , Neoplasias Peritoneais , Humanos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/cirurgia , Neoplasias Peritoneais/secundário , Estudos Retrospectivos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Prognóstico , Quimioterapia Adjuvante , Taxa de Sobrevida
17.
Cereb Cortex ; 32(23): 5243-5258, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35136976

RESUMO

The prefrontal cortex (PFC) plays essential roles in cognitive processes. Previous studies have suggested the layer and the cell type-specific activation for cognitive enhancement. However, the mechanism by which a temporal pattern of activation affects cognitive function remains to be elucidated. Here, we investigated whether the specific activation of excitatory neurons in the superficial layers mainly in the PFC according to a rhythmic or nonrhythmic pattern could modulate the cognitive functions of normal mice. We used a C128S mutant of channelrhodopsin 2, a step function opsin, and administered two light illumination patterns: (i) alternating pulses of blue and yellow light for rhythmic activation or (ii) pulsed blue light only for nonrhythmic activation. Behavioral analyses were performed to compare the behavioral consequences of these two neural activation patterns. The alternating blue and yellow light pulses, but not the pulsed blue light only, significantly improved spatial working memory and social recognition without affecting motor activity or the anxiety level. These results suggest that the rhythmic, but not the nonrhythmic, activation could enhance cognitive functions. This study indicates that not only the population of neurons that are activated but also the pattern of activation plays a crucial role in the cognitive enhancement.


Assuntos
Neurônios , Córtex Pré-Frontal , Camundongos , Animais , Córtex Pré-Frontal/fisiologia , Neurônios/fisiologia , Cognição , Memória de Curto Prazo/fisiologia , Channelrhodopsins/genética
18.
Langenbecks Arch Surg ; 408(1): 271, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428230

RESUMO

PURPOSE: Laparoscopic colectomy for transverse colon cancer (TCC) can be technically demanding due to the anatomical complexity of the region. In Japan, the Endoscopic Surgical Skill Qualification System (ESSQS) was established to improve the skill of laparoscopic surgeons and further develop surgical teams. We examined the safety and feasibility of laparoscopic colectomy for TCC and evaluated the effects of the Japanese ESSQS in facilitating this approach. METHODS: We retrospectively reviewed 136 patients who underwent laparoscopic colectomy for TCC between April 2016 and December 2021. Patients were divided into an ESSQS-qualified surgeon group (surgery performed by an ESSQS-qualified surgeon, n = 52) and a non ESSQS-qualified surgeon (surgery performed by a non ESSQS-unqualified surgeon, n = 84). Clinicopathological and surgical features were compared between groups. RESULTS: Postoperative complications occurred in 37 patients (27.2%). The proportion of patients who developed postoperative complications was lower in the ESSQS-qualified surgeon group (8.0%) than that in the non ESSQS-qualified surgeon group (34.5%; p < 0.017). Multivariate analysis revealed "Operation by ESSQS-qualified surgeon surgeon" (odds ratio (OR) 0.360, 95% confidence interval (CI) 0.140-0.924; p = 0.033), blood loss (OR 4.146, 95% CI 1.688-10.184; p = 0.002), and clinical N status (OR 4.563, 95% CI 1.814-11.474; p = 0.001) as factors independently associated with postoperative complications. CONCLUSION: The present multicenter study confirmed the feasibility and safety of laparoscopic colectomy for TCC and revealed that ESSQS-qualified surgeon achieved better surgical outcomes.


Assuntos
Colectomia , Colo Transverso , Neoplasias do Colo , Laparoscopia , Humanos , Colectomia/efeitos adversos , Colo Transverso/cirurgia , Colo Transverso/patologia , Neoplasias do Colo/cirurgia , Neoplasias do Colo/patologia , Laparoscopia/efeitos adversos , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Resultado do Tratamento
19.
Surg Today ; 53(12): 1335-1342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37072524

RESUMO

PURPOSE: For advanced left colon cancer, lymph node dissection at the root of the inferior mesenteric artery is recommended. Whether the left colic artery (LCA) should be preserved or resected remains contentious. METHODS: The 367 patients who underwent laparoscopic sigmoidectomy or anterior resection and who were pathologically node-positive were reviewed. Patients were divided into LCA-preserving group (LCA-P, n = 60) and LCA-non-preserving group (LCA-NP, n = 307). Propensity score matching was applied to minimize selection bias and 59 patients were matched. RESULTS: Before matching, the rates of poor performance status and cardiovascular disease were higher in the LCA-P group (p < 0.001). After matching, operation time was longer (276 vs. 240 min, p = 0.001), the frequency of splenic flexure mobilization (62.7% vs. 33.9%, p = 0.003) and lymphovascular invasion (84.7% vs. 55.9%, p = 0.001) was higher in the LCA-P group. Severe postoperative complications (CD ≥ 3) occurred only in the LCA-NP group (0% vs. 8.4%, p = 0.028). The median follow-up period was 38.5 months (range 2.0-70.0 months). The 5-year RFS rates (67.8% vs. 66.0%, p = 0.871) and OS rates (80.4% vs. 74.9%, p = 0.308) were comparable between the groups. CONCLUSIONS: Laparoscopic LCA-sparing surgery for left-sided colorectal cancer reduces the risk of severe complications and offers a favorable long-term prognosis.


Assuntos
Neoplasias do Colo , Laparoscopia , Neoplasias Retais , Humanos , Artéria Mesentérica Inferior/cirurgia , Excisão de Linfonodo , Colo Sigmoide/cirurgia , Neoplasias Retais/cirurgia , Neoplasias Retais/patologia , Neoplasias do Colo/cirurgia , Estudos Retrospectivos
20.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511152

RESUMO

The auditory brainstem response (ABR) is a scalp recording of potentials produced by sound stimulation, and is commonly used as an indicator of auditory function. However, the ABR threshold, which is the lowest audible sound pressure, cannot be objectively determined since it is determined visually using a measurer, and this has been a problem for several decades. Although various algorithms have been developed to objectively determine ABR thresholds, they remain lacking in terms of accuracy, efficiency, and convenience. Accordingly, we proposed an improved algorithm based on the mutual covariance at adjacent sound pressure levels. An ideal ABR waveform with clearly defined waves I-V was created; moreover, using this waveform as a standard template, the experimentally obtained ABR waveform was inspected for disturbances based on mutual covariance. The ABR testing was repeated if the value was below the established cross-covariance reference value. Our proposed method allowed more efficient objective determination of ABR thresholds and a smaller burden on experimental animals.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Audição , Camundongos , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Estimulação Acústica , Limiar Auditivo/fisiologia , Audição/fisiologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA