Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 92: 177-184, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30193933

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive muscle weakness, paralysis, and death. Although its neuropathology is well investigated, currently, effective treatments are unavailable. The mechanism of ALS involves the aggregation and accumulation of several mutant proteins, including mutant copper­zinc superoxide dismutase (SOD1), TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma (FUS) proteins. Previous reports have shown that excessive oxidative stress, associated with mitochondrial dysfunction and mutant protein accumulation, contributes to ALS pathology. The present study focuses on the promotion of SOD1 misfolding and aggregation by oxidative stress. Having recently synthesized novel organic gem-dihydroperoxides (DHPs) with high anti-oxidant activity, we now examined whether DHPs reduce the mutant SOD1-induced intracellular aggregates involved in oxidative stress. We found that, among DHPs, 12AC2O significantly inhibited mutant SOD1-induced cell death and reduced the intracellular mutant SOD1 aggregates. Moreover, immunofluorescence staining with redox-sensitive dyes showed that 12AC2O reduced the excessive level of intracellular mutant SOD1-induced reactive oxygen species (ROS). Additionally, ESR analysis showed that 12AC2O exerts a direct scavenging effect against the hydroxyl radical (OH) and the superoxide anion (O2-). These results suggest that 12AC2O is a very useful agent in combination with other agents against ALS.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Superóxido Dismutase-1/metabolismo , Animais , Linhagem Celular Tumoral , Sequestradores de Radicais Livres/química , Camundongos , Mutação , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Peróxidos/química , Superóxido Dismutase-1/genética
2.
Chem Asian J ; 14(1): 121-124, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30251357

RESUMO

Olefin bifunctionalization is a facile route to obtain complex molecules from abundant and commercially available olefin feedstocks. Visible light together with a catalytic amount of tris(bipyridine)ruthenium salt catalyzes the aryl alkoxylation of styrenes with aryl diazonium salts in alcohol solvents via a photoredox process. The scope of this proposed reaction with respect to various aryl diazonium salts and styrenes has been investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA