Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1029-1040, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890224

RESUMO

Prostaglandin E receptor subtype 4 (EP4) knockout mice develops spontaneous hypercholesterolemia but the detailed mechanisms by which EP4 affects cholesterol homeostasis remains unexplored. We sought to determine the cause of hypercholesterolemia in EP4 knockout mice, focusing on the role of EP4 in regulating the synthesis and elimination of cholesterol. Deficiency of EP4 significantly decreased total bile acid levels in the liver by 26.2% and the fecal bile acid content by 27.6% as compared to wild type littermates, indicating that the absence of EP4 decreased hepatic bile acid synthesis and their subsequent excretion in stools. EP4 deficiency negatively regulate bile acid synthesis through repression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK)-mediated cholesterol 7α-hydroxylase (CYP7A1) expression and that the hypercholesterolemia in EP4 knockout mice is due to a defect in cholesterol conversion into bile acids. Deficiency of EP4 also increased de novo cholesterol synthesis and altered cholesterol fluxes in and out of the liver. Treating high fat diet-challenged mice with the pharmacological EP4 agonist, CAY10580 (200 µg/kg body weight/day i.p) for three weeks effectively prevented diet-induced hypercholesterolemia, enhanced endogenous bile acid synthesis and their fecal excretion. In summary, EP4 plays a critical role in maintaining cholesterol homeostasis by regulating the synthesis and elimination of bile acids. Activation of EP4 serves as an effective novel strategy to promote cholesterol disposal in the forms of bile acids in order to lower plasma cholesterol levels.


Assuntos
Anticolesterolemiantes/farmacologia , Ácidos e Sais Biliares/deficiência , Colesterol/metabolismo , Dinoprostona/análogos & derivados , Hipercolesterolemia/genética , Pirrolidinonas/farmacologia , Receptores de Prostaglandina E Subtipo EP4/genética , Animais , Ácidos e Sais Biliares/biossíntese , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dinoprostona/farmacologia , Fezes/química , Regulação da Expressão Gênica , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores de Prostaglandina E Subtipo EP4/deficiência , Transdução de Sinais
2.
FASEB J ; 31(9): 4023-4036, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28533326

RESUMO

The purpose of this study was to investigate whether genetic ablation of prostaglandin E receptor subtype 4 (EP4) affects white adipose tissue (WAT) remodeling mediated by ß3-adrenergic stimulation. The selective ß3-adrenergic agonist, CL316243 (1 mg/kg/d, i.p.) caused a greater increase in metabolic rate in EP4-knockout mice. CL316243 fragmented the unilocular lipid droplet into multilocular lipid vacuoles and increased mitochondrial biogenesis and its activity. These changes were amplified in mice with EP4 deficiency and were selectively seen in subcutaneous WAT. The expression of fat-specific protein (FSP)-27, a protein that promotes fusion of triglycerides and formation of unilocular lipid droplets were diminished, whereas the expression of phosphorylated AMPK, the upstream regulator of FSP27, was enhanced in EP4-deficient mice. The present study showed that EP4 acts as a negative regulator of WAT remodeling, it tightly coordinates rates of triglyceride storage in lipid droplets and mitochondrial respiratory function in subcutaneous white adipocytes through the phosphorylated AMPK-FSP27 signaling axis. Thus, deletion of EP4 increases mitochondrial biogenesis and oxidative capacity in WAT, and fat mass loss ensues in mice.-Ying, F., Cai, Y., Cai, Y., Wang, Y., Tang, E. H. C. Prostaglandin E receptor subtype 4 regulates lipid droplet size and mitochondrial activity in murine subcutaneous white adipose tissue.


Assuntos
Tecido Adiposo Branco/metabolismo , Regulação da Expressão Gênica/fisiologia , Lipídeos/química , Mitocôndrias/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Gordura Subcutânea/metabolismo , Animais , Dioxóis/farmacologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Camundongos , Camundongos Knockout , Oxirredução , Receptores de Prostaglandina E Subtipo EP4/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
FASEB J ; 29(12): 4924-36, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26271253

RESUMO

Upon high-fat feeding, prostaglandin E receptor subtype 4 (EP4)-knockout mice gain less body weight than their EP4(+/+) littermates. We investigated the cause of the lean phenotype. The mice showed a 68.8% reduction in weight gain with diminished fat mass that was not attributable to reduced food intake, fat malabsorption, or increased energy expenditure. Plasma triglycerides in the mice were elevated by 244.9%. The increase in plasma triglycerides was independent of changes in hepatic very low density lipoprotein (VLDL)-triglyceride production or intestinal chylomicron-triglyceride synthesis. However, VLDL-triglyceride clearance was drastically impaired in the EP4-knockout mice. The absence of EP4 in mice compromised the activation of lipoprotein lipase (LPL), the key enzyme responsible for trafficking of plasma triglycerides into peripheral tissues. Deficiency in EP4 reduced hepatic mRNA expression of the transcriptional factor cAMP response element binding protein H (by 36.8%) and LPL activators, including apolipoprotein (Apo)a5 (by 40.2%) and Apoc2 (by 61.3%). In summary, the lean phenotype of EP4-deficient mice resulted from reduction in adipose tissue and accretion of other peripheral organs caused by impaired triglyceride clearance. The findings identify a new metabolic dimension in the physiologic role played by endogenous EP4.


Assuntos
Metabolismo dos Lipídeos/genética , Receptores de Prostaglandina E Subtipo EP4/genética , Triglicerídeos/sangue , Animais , Composição Corporal , Peso Corporal , Homeostase , Hipercolesterolemia/genética , Hipertrigliceridemia/genética , Camundongos , Camundongos Knockout , Condicionamento Físico Animal , Redução de Peso
4.
J Diabetes Res ; 2016: 1324347, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27190998

RESUMO

Prostaglandin E2 (PGE2) is an endogenous lipid mediator, produced from the metabolism of arachidonic acids, upon the sequential actions of phospholipase A2, cyclooxygenases, and prostaglandin E synthases. The various biological functions governed by PGE2 are mediated through its four distinct prostaglandin E receptors (EPs), designated as EP1, EP2, EP3, and EP4, among which the EP4 receptor is the one most widely distributed in the heart. The availability of global or cardiac-specific EP4 knockout mice and the development of selective EP4 agonists/antagonists have provided substantial evidence to support the role of EP4 receptor in the heart. However, like any good drama, activation of PGE2-EP4 signaling exerts both protective and detrimental effects in the ischemic heart disease. Thus, the primary object of this review is to provide a comprehensive overview of the current progress of the PGE2-EP4 signaling in ischemic heart diseases, including cardiac hypertrophy and myocardial ischemia/reperfusion injury. A better understanding of PGE2-EP4 signaling should promote the development of more effective therapeutic approaches to treat the ischemic heart diseases without triggering unwanted side effects.


Assuntos
Cardiomegalia/metabolismo , Dinoprostona/metabolismo , Miocárdio/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais/fisiologia
5.
Oxid Med Cell Longev ; 2016: 3453059, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27795807

RESUMO

The present study explored the potential causal link between ischemia-driven cyclooxygenase-2 (COX-2) expression and enhanced apoptosis during myocardial ischemia/reperfusion (I/R) by using H9C2 cardiomyocytes and primary rat cardiomyocytes subjected to hypoxia/reoxygenation (H/R). The results showed that H/R resulted in higher COX-2 expression than that of controls, which was prevented by pretreatment with Helenalin (NFκB specific inhibitor). Furthermore, pretreatment with NS398 (COX-2 specific inhibitor) significantly attenuated H/R-induced cell injury [lower lactate dehydrogenase (LDH) leakage and enhanced cell viability] and apoptosis (higher Bcl2 expression and lower level of cleaved caspases-3 and TUNEL-positive cells) in cardiomyocytes. The amelioration of posthypoxic apoptotic cell death was paralleled by significant attenuation of H/R-induced increases in proinflammatory cytokines [interleukin 6 (IL6) and tumor necrosis factor (TNFα)] and reactive oxygen species (ROS) production and by higher protein expression of phosphorylated Akt and inducible nitric oxide synthase (iNOS) and enhanced nitric oxide production. Moreover, the application of LY294002 (Akt-specific inhibitor) or 1400W (iNOS-selective inhibitor) cancelled the cellular protective effects of NS398. Findings from the current study suggest that activation of NFκB during cardiomyocyte H/R induces the expression of COX-2 and that higher COX-2 expression during H/R exacerbates cardiomyocyte H/R injury via mechanisms that involve cross talks among inflammation, ROS, and Akt/iNOS/NO signaling.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Apoptose , Hipóxia Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
Cell Cycle ; 14(22): 3580-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505215

RESUMO

Repressor activator protein 1 (Rap1) is essential for maintaining telomere length and structural integrity, but it also exerts other non-telomeric functions. The present study tested the hypothesis that Rap1 is released into the cytoplasm and induces production of pro-inflammatory cytokines via nuclear factor kappa B (NFκB) signaling in macrophages, a cell type involved in the development and progression of atherosclerotic lesions. Western blotting analysis confirmed that Rap1 was present in the cytoplasm of differentiated human monocytic leukemia cells (THP-1, a macrophage-like cell line). Co-immunoprecipitation assay revealed a direct interaction between Rap1 and I kappa B kinase (IKK). Knockdown of Rap1 suppressed lipopolysaccharide-mediated activation of NFκB, and phosphorylation of inhibitor of kappa B α (IκBα) and p65 in THP-1 macrophages. The reduction of NFκB activity was paralleled by a decreased production of NFκB-dependent pro-inflammatory cytokines and an increased expression of IκBα (native NFκB inhibitor) in various macrophage models with pro-inflammatory phenotype, including THP-1, mouse peritoneal macrophages and bone marrow-derived M1 macrophages. These changes were observed selectively in pro-inflammatory macrophages but not in bone marrow-derived M2 macrophages (with an anti-inflammatory phenotype), mouse lung endothelial cells, human umbilical vein endothelial cells or human aortic smooth muscle cells. Immunostaining revealed that Rap1 was localized mainly in macrophage-rich areas in human atherosclerotic plaques and that the presence of Rap1 was positively correlated with the advancement of the disease process. In pro-inflammatory macrophages, Rap1 promotes cytokine production via NFκB activation favoring a pro-inflammatory environment which may contribute to the development and progression of atherosclerosis.


Assuntos
Macrófagos/metabolismo , NF-kappa B/genética , Placa Aterosclerótica/genética , Proteínas de Ligação a Telômeros/genética , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Complexo Shelterina , Transdução de Sinais , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA