Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 101(14): 6043-6052, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33857333

RESUMO

BACKGROUND: Codonopsis pilosula and Codonopsis tangshen are plants widely used in traditional Chinese medicine. Two pectic polysaccharides from the roots of C. pilosula and C. tangshen named as CPP-1 and CTP-1 were obtained by boiling water extraction and column chromatography. RESULTS: The core structures of both CPP-1 and CTP-1 comprise the long homogalacturonan region (HG) as the backbone and the rhamnogalacturonan I (RG-I) region as the side chains. CPP-1 has methyl esterified galacturonic acid units and a slightly lower molecular weight than CTP-1. Biological testing suggested that CPP-1 and CTP-1 can protect IPEC-J2 cells against the H2 O2 -induced oxidative stress by up-regulating nuclear factor-erythroid 2-related factor 2 and related genes in IPEC-J2 cells. The different antioxidative activities of polysaccharides from different source of C. pilosula may be result of differences in their structures. CONCLUSION: All of the results indicated that pectic polysaccharides CPP-1 and CTP-1 from different species of C. pilosula roots could be used as a potential natural antioxidant source. These findings will be valuable for further studies and new applications of pectin-containing health products. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Codonopsis/química , Pectinas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Linhagem Celular , Humanos , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pectinas/farmacologia , Raízes de Plantas/química
2.
J Ethnopharmacol ; 332: 118357, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38763374

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chuanminshen violaceum M. L. Sheh & R. H. Shan (CV) is used as a medicine with roots, which have the effects of benefiting the lungs, harmonizing the stomach, resolving phlegm and detoxifying. Polysaccharide is one of its main active components and has various pharmacological activities, but the structural characterization and pharmacological activities of polysaccharide from the stems and leaves parts of CV are still unclear. AIM OF THE STUDY: The aim of this study was to investigate the optimal extraction conditions for ultrasound-assisted extraction of polysaccharide from CV stems and leaves, and to carry out preliminary structural analyses, anti-inflammatory and antioxidant effects of the obtained polysaccharide and to elucidate the underlying mechanisms. MATERIALS AND METHODS: The ultrasonic-assisted extraction of CV stems and leaves polysaccharides was carried out, and the response surface methodology (RSM) was used to optimize the extraction process to obtain CV polysaccharides (CVP) under the optimal conditions. Subsequently, we isolated and purified CVP to obtain the homogeneous polysaccharide CVP-AP-I, and evaluated the composition, molecular weight, and structural features of CVP-AP-I using a variety of technical methods. Finally, we tested the pharmacological activity of CVP-AP-Ⅰ in an LPS-induced model of oxidative stress and inflammation in intestinal porcine epithelial cells (IPEC-J2) and explored its possible mechanism of action. RESULTS: The crude polysaccharide was obtained under optimal extraction conditions and subsequently isolated and purified to obtain CVP-AP-Ⅰ (35.34 kDa), and the structural characterization indicated that CVP-AP-Ⅰ was mainly composed of galactose, galactose, rhamnose and glucose, which was a typical pectic polysaccharide. In addition, CVP-AP-Ⅰ attenuates LPS-induced inflammation and oxidative stress by inhibiting the expression of pro-inflammatory factor genes and proteins and up-regulating the expression of antioxidant enzyme-related genes and proteins in IPEC-J2, by a mechanism related to the activation of the Nrf2/Keap1 signaling pathway. CONCLUSION: The results of this study suggest that the polysaccharide isolated from CV stems and leaves was a pectic polysaccharide with similar pharmacological activities as CV roots, exhibiting strong anti-inflammatory and antioxidant activities, suggesting that CV stems and leaves could possess the same traditional efficacy as CV roots, which is expected to be used in the treatment of intestinal diseases.


Assuntos
Anti-Inflamatórios , Antioxidantes , Folhas de Planta , Caules de Planta , Polissacarídeos , Folhas de Planta/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/química , Animais , Caules de Planta/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Camundongos , Suínos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Intestinos/efeitos dos fármacos , Células RAW 264.7
3.
Front Immunol ; 14: 1159291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153605

RESUMO

Aging is a biological process of progressive deterioration of physiological functions, which poses a serious threat to individual health and a heavy burden on public health systems. As population aging continues, research into anti-aging drugs that prolong life and improve health is of particular importance. In this study, the polysaccharide from stems and leaves of Chuanminshen violaceum was obtained with water extraction and alcohol precipitation, and then separated and purified with DEAE anion exchange chromatography and gel filtration to obtain CVP-AP-I. We gavaged natural aging mice with CVP-AP-I and performed serum biochemical analysis, histological staining, quantitative real-time PCR (qRT-PCR) and ELISA kit assays to analyze inflammation and oxidative stress-related gene and protein expression in tissues, and 16SrRNA to analyze intestinal flora. We found that CVP-AP-I significantly improved oxidative stress and inflammatory responses of the intestine and liver, restored the intestinal immune barrier, and balanced the dysbiosis of intestinal flora. In addition, we revealed the potential mechanism behind CVP-AP-I to improve intestinal and liver function by regulating intestinal flora balance and repairing the intestinal immune barrier to regulate the intestinal-liver axis. Our results indicated that C. violaceum polysaccharides possessed favorable antioxidant, anti-inflammatory and potentially anti-aging effects in vivo.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Estresse Oxidativo , Polissacarídeos/farmacologia , Polissacarídeos/química , Envelhecimento , Componentes Aéreos da Planta
4.
Carbohydr Polym ; 306: 120626, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746576

RESUMO

The roots of Salvia miltiorrhiza have been used in Traditional Chinese Medicine for thousands of years. However, tons of aerial parts of this plant are usually discarded in the production of roots preparation. To make better use of these plant resources, the polysaccharide isolated from the aerial part of S. miltiorrhiza was investigated for its potential protection against intestinal diseases. A pectic polysaccharide (SMAP-1) was isolated and characterized being composed of homogalacturonan as the main chain and rhamnogalacturonan type I as ramified region, with side chains including arabinans and possible arabinogalactan type I and II. SMAP-1 exhibited robust protective effects against dextran sodium sulfate (DSS)-induced colitis and restored colitis symptoms, colonic inflammation, and barrier functions. Anti-oxidative effects were also observed by up-regulating Nrf2/Keap1 signaling pathway. Additionally, the level of serum 5-methoxyindole-3-carboxaldehyde (5-MC) was restored by SMAP-1 identified in metabolomic analysis, being correlated with the aforementioned effects. Protection against oxidative stress on intestinal porcine enterocyte cells (IPEC-J2) by 5-MC was observed through the activation of Nrf2/Keap1 system, as also shown by SMAP-1. In conclusion, SMAP-1 could be a promising candidate for colitis prevention, and 5-MC could be the signal metabolite of SMAP-1 in protecting against oxidative stress in the intestine.


Assuntos
Colite , Salvia miltiorrhiza , Animais , Suínos , Fator 2 Relacionado a NF-E2/metabolismo , Salvia miltiorrhiza/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Transdução de Sinais , Polissacarídeos/efeitos adversos , Sulfato de Dextrana/toxicidade
5.
Int J Biol Macromol ; 242(Pt 1): 124689, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148926

RESUMO

The roots of Angelica sinensis have been used in Traditional Chinese Medicine for thousands of years. However, tons of aerial parts of this herb (aboveground part) are commonly discarded during the process of root preparations. A polysaccharide (ASP-Ag-AP) in the aboveground parts of A. sinensis was isolated and preliminarily characterized as typical plant pectin. ASP-Ag-AP exhibited noticeable protective effects against dextran sodium sulfate (DSS)-induced colitis, including reduction of colonic inflammation, modulation of barrier function, and alteration of gut microbiota and serum metabolite profile. Anti-inflammatory effects of ASP-Ag-AP were observed by inhibiting TLR4/MyD88/NF-κB signaling pathway in vitro and in vivo. Additionally, the level of serum metabolite 5-methyl-dl-tryptophan (5-MT) was reduced by DSS and restored by ASP-Ag-AP, which also negatively correlated with Bacteroides, Alistipes, Staphylococcus and pro-inflammatory factors. The protection from inflammatory stress on intestinal porcine enterocytes cells (IPEC-J2) of 5-MT was observed through the inhibition of TLR4/MyD88/NF-κB pathway. Besides, 5-MT also exhibited robust anti-inflammatory effect in colitis mice with improving colitis symptoms, barrier function and gut microbiota, which was the same as presented by ASP-Ag-AP. Therefore, ASP-Ag-AP could be a promising agent for colitis prevention and 5-MT could be the signal metabolite of ASP-Ag-AP on defending against intestinal inflammatory stress.


Assuntos
Angelica sinensis , Colite , Microbioma Gastrointestinal , Camundongos , Animais , Suínos , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Angelica sinensis/metabolismo , Receptor 4 Toll-Like/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Polissacarídeos/uso terapêutico , Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
6.
Front Nutr ; 9: 992102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204377

RESUMO

One purified neutral polysaccharide fraction was obtained from the rhizome of Polygonatum sibiricum by DEAE ion exchange and gel chromatography. Structure elucidation was performed by methanolysis, methylation, FT-IR, and NMR. The results indicated that PSP-NP was composed of 1,4-ß-D-Gal,1, 4, 6-ß-D-Gal, T-α-D-Man,1, 4-α-D-Glc, and T-α-D-Glc with a molecular weight of 43.0 kDa. We supplied this polysaccharide to aged mice and found it is of benefits to intestinal functions, as indicated by better tissue integrity and motility, improved oxidative stress and inflammation, reduced intestinal permeability and serum LPS level, as well as balanced gut microbial composition and short-chain fatty acids production. These results display a novel Polygonatum sibiricum polysaccharide to improve the intestinal function of aged mice, which provides pieces of evidence for its further development and utilization.

7.
J Ethnopharmacol ; 295: 115446, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35675860

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Angelica sinensis, has been commonly used in gynecology for centuries, and is normally applied divided into different parts in various clinical applications. At present, the majority of existing studies focus on the volatile oil and ferulic acid extracted from different parts of A. sinensis, but there is a dearth of scientific information on its water-soluble polysaccharides. AIM OF THE STUDY: The structures of polysaccharides from plants, have been reported contributing to multiple pharmacological activities such as anti-oxidative, anti-inflammatory, anti-tumor and liver protection. Therefore, the focus of this study was on its anti-oxidative and anti-inflammatory activities in vitro, which would be based on the various polysaccharides with distinct structures obtained from different parts of the A. sinensis root. MATERIALS AND METHODS: Four parts of A. sinensis root were separated according to the Chinese Pharmacopoeia: head, body, tail and whole body. Crude polysaccharides were obtained by water extraction and ethanol precipitation method, and were further fractionated by DEAE Sepharose chromatographic column and gel filtration. The comparison of ASPs from different root parts were performed, including chemical compositions determined by colorimetric analysis, monosaccharide compositions measured by high performance liquid chromatography (HPLC), glycosidic linkage units determined by methylation and gas chromatography-mass spectrometry (GC-MS), organic functional groups determined by FT-IR, molecular weight (Mw) demarcated by gel permeation chromatography, and the viscosities and solubilities were measured according to method published in the previous report with minor modification. In vitro biological activities of APSs were compared on lipopolysaccharide (LPS)-induced inflammatory and oxidative stress models on IPEC-J2 cells. RESULTS: Four purified polysaccharides, ASP-H-AP, ASP-B-AP, ASP-T-AP and ASP-Hb-AP from the root of A. sinensis, were obtained, and consisted of various contents of protein and the polyphenol. They were possibly pectic polysaccharides with a long homogalacturonan region as the main backbone and ramified with rhamnogalacturonan I region, but they were differed by subregions and the relative contents of glycosidic units. The Mw of four pectic polysaccharides were ranged from 67.9-267.7 kDa. The infrared spectrum also showed that the four polysaccharide fractions contained the characteristic peaks of polysaccharides. Their distinct primary structure could lead to a variety of biological activities. In vitro biological assays suggested that four polysaccharide fractions can protect IPEC-J2 cells against the LPS-induced inflammation by down-regulating inflammation factors and related genes on IPEC-J2 cells. These polysaccharides also could alleviate oxidative stress on IPEC-J2 cells by up-regulating the gene and protein expressions of antioxidant enzymes. It was concluded that ASP-H-AP possessed better anti-inflammatory and anti-oxidative effects, while those of ASP-T-AP was relatively poor among the four polysaccharide fractions. CONCLUSION: All results indicated that the structure of pectic polysaccharides from different root parts of A. sinensis differed, which lead to their distinct anti-inflammatory and anti-oxidative activities. This may also be one of the factors why different parts of A. sinensis showed various pharmacological activities and applied independently in traditional use. In addition, it would be valuable for further studies on structure-activity relationship of polysaccharides obtained by different root parts of A. sinensis.


Assuntos
Angelica sinensis , Angelica sinensis/química , Anti-Inflamatórios/farmacologia , Inflamação , Lipopolissacarídeos , Polissacarídeos/química , Polissacarídeos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
8.
Int J Biol Macromol ; 175: 473-480, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571586

RESUMO

Platycodonis Radix is widely used as homology of medicine and food in China; polysaccharides are thought to be one of its functional constituents. In this study, a pectic polysaccharide, PGP-I-I, was obtained from the root of the traditional medicine plant Platycodon grandiflorus through ion exchange chromatography and gel filtration. This was characterized being mainly composed of 1,5-α-L-arabinan and both arabinogalactan type I (AG-I) and II chains linked to rhamnogalacturonan I (RG-I) backbone linked to longer galacturonan chains. In vitro bioactivity study showed that PGP-I-I could restore the intestinal cellular antioxidant defense under the condition of hydrogen peroxide (H2O2) treatment through promoting the expressions of cellular antioxidant genes and protect against oxidative damages.


Assuntos
Pectinas/química , Platycodon/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Linhagem Celular , Cromatografia em Gel , Cromatografia por Troca Iônica , Carboidratos da Dieta , Galactanos/química , Peróxido de Hidrogênio , Extratos Vegetais/química , Raízes de Plantas/química , Polissacarídeos/química , Suínos
9.
Artigo em Inglês | MEDLINE | ID: mdl-32802111

RESUMO

The objectives of this study were to develop and optimize ultrasound-assisted extraction (UAE) for shikonin from Arnebia euchroma using response surface methodology (RSM) and to evaluate the antimicrobial activity of shikonin. The maximum yield of shikonin was 1.26% under the optimal extraction conditions (ultrasound power, 93 W; time, 87 min; temperature, 39°C; and liquid-solid ratio, 11 : 1). Shikonin showed inhibitory activity against standard strains and clinical isolates to varying extents (MICs ranging from 128 to 1024 µg/mL, MBCs ranging from 256 to 2048 µg/mL), and it was more effective for Gram-positive bacteria as indicated by lower MIC and MBC values. Time-kill curves revealed that antibacterial activity of shikonin exhibited a dose-response relationship. In summary, via this study, we identified ultrasound-assisted RSM as the optimal extraction method for shikonin, which is a potential material for the treatment of bacterial infections.

10.
Int J Biol Macromol ; 159: 704-713, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32422266

RESUMO

In this study, two pectic polysaccharides from stems of Codonopsis pilosula (CPSP-1) and C. tangshen (CTSP-1) were obtained by ion exchange chromatography and gel filtration. The molecular weight of CPSP-1 and CTSP-1 were 13.1 and 23.0 kDa, respectively. The results of structure elucidation indicated that both CPSP-1 and CTSP-1 are pectic polysaccharides with long homogalacturonan regions (HG) (some of galacturonic acid units were methyl esterified) and rhamnogalacturonan I (RG-I) regions. Side chains for CTSP-1 are both arabinogalactan type I (AG-I) and type II (AG-II), while CPSP-1 only has AG-II. The biological test demonstrated that CPSP-1 and CTSP-1 displayed an antioxidant property through mediating the intestinal cellular antioxidant defense system, which could protect cultured intestinal cells from oxidative stress induced oxidative damages and cell viability suppression. CPSP-1 and CTSP-I showed different bioactivities and mechanisms, which may be due to the difference in their structures.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Codonopsis/química , Caules de Planta/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Animais , Antioxidantes/isolamento & purificação , Linhagem Celular , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peso Molecular , Monossacarídeos , Polissacarídeos/isolamento & purificação , Relação Estrutura-Atividade , Suínos
11.
Int J Nanomedicine ; 11: 4275-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27621621

RESUMO

Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300-600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Nanopartículas Metálicas , Óxido de Zinco/farmacologia , Ração Animal , Animais , Sistema Enzimático do Citocromo P-450/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nanopartículas Metálicas/química , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA