Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 69(1): 129-141, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29452206

RESUMO

BACKGROUND & AIMS: Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. However, the cellular defense mechanisms underlying ALD are not well understood. Recent studies highlighted the involvement of chaperone-mediated autophagy (CMA) in regulating hepatic lipid metabolism. Sorting nexin (SNX)-10 has a regulatory function in endolysosomal trafficking and stabilisation. Here, we investigated the roles of SNX10 in CMA activation and in the pathogenesis of alcohol-induced liver injury and steatosis. METHODS: Snx10 knockout (Snx10 KO) mice and their wild-type (WT) littermates fed either the Lieber-DeCarli liquid alcohol diet or a control liquid diet, and primary cultured WT and Snx10 KO hepatocytes stimulated with ethanol, were used as in vivo and in vitro ALD models, respectively. Activation of CMA, liver injury parameters, inflammatory cytokines, oxidative stress and lipid metabolism were measured. RESULTS: Compared with WT littermates, Snx10 KO mice exhibited a significant amelioration in ethanol-induced liver injury and hepatic steatosis. Both in vivo and in vitro studies showed that SNX10 deficiency upregulated lysosome-associated membrane protein type 2A (LAMP-2A) expression and CMA activation, which could be reversed by SNX10 overexpression in vitro. LAMP-2A interference confirmed that the upregulation of Nrf2 and AMPK signalling pathways induced by SNX10 deficiency relied on CMA activation. Pull-down assays revealed an interaction between SNX10 and cathepsin A (CTSA), a key enzyme involved in LAMP-2A degradation. Deficiency in SNX10 inhibited CTSA maturation and increased the stability of LAMP-2A, resulting in an increase in CMA activity. CONCLUSIONS: SNX10 controls CMA activity by mediating CTSA maturation, and, thus, has an essential role in alcohol-induced liver injury and steatosis. Our results provide evidence for SNX10 as a potential promising therapeutic target for preventing or ameliorating liver injury in ALD. LAY SUMMARY: Alcoholic liver disease is a major cause of morbidity and mortality worldwide. Recent studies highlight the involvement of chaperone-mediated autophagy (CMA) in regulating hepatic lipid metabolism. Our study reveals that deficiency of sorting nexin (SNX) 10 increases the stability of LAMP-2A by inhibiting cathepsin A maturation, resulting in the increase of CMA activity and, thus, alleviates alcohol-induced liver injury and steatosis.


Assuntos
Fígado Gorduroso/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/complicações , Estresse Oxidativo , RNA/genética , Nexinas de Classificação/genética , Animais , Autofagia , Western Blotting , Modelos Animais de Doenças , Etanol , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Hepatócitos/patologia , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Nexinas de Classificação/biossíntese
2.
J Ethnopharmacol ; 217: 118-125, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29421593

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jiang-Xian HuGan (JXHG) formulated by five natural products including Freshwater clam (Corbicula fluminea), Curcuma longa L., Ligustrum lucidum, Eclipta prostrata (L.) L. and Paeonia lactiflora Pall., has exhibited a great hepatoprotective effect. AIM OF THIS STUDY: We investigated the effect of JXHG on concanavalin A (ConA)-induced acute live injury in mice, and to elucidate its underlying molecular mechanisms. MATERIALS AND METHODS: Jiangkanling Capsule (900 mg/kg), low-dose JXHG (LJXHG, 700 mg/kg), high-dose JXHG (HJXHG, 1400 mg/kg) were administered to mice by oral gavage daily for 20 days prior to a single intravenous injection of ConA (20 mg/kg). Liver injury was evaluated by measuring the serum levels of enzymes and cytokines as well as liver histological analysis. We also measured the hepatic expression of cytokines at mRNA levels and the proteins related to NF-κB and Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathways. RESULT: Our results showed that JXHG pretreatment significantly alleviated ConA-induced live injury as evidenced by decreased serum levels of glutamic-pyruvic transaminase (ALT) and glutamic oxalacetic transaminase (AST), and reduced hepatocyte apoptosis and mortality. Furthermore, JXHG was able to significantly reduce the serum levels of proinflammatory cytokines, down-regulate the mRNA expression of interleukin-6 (IL-6) and interferon-γ (IFN-γ), and up-regulate IL-10 as well as superoxide-dimutase-1 (SOD1), glutathione reductase (GSR) and Glutathione peroxidase 2 (GPX2) mRNA in the liver tissues after Con A injection. In addition, JXHG pretreatment dramatically suppressed the phosphorylation of NF-κB p65 (p65), increased Nrf2 expression, and decreased the expression ratio of cleaved caspase-3/caspase-3 in liver tissues. CONCLUSION: These results suggest that JXHG protects against ConA-induced acute live injury through inhibiting NF-κB mediated inflammatory pathway and promoting Nrf2 mediated anti-oxidative stress signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Concanavalina A , Medicamentos de Ervas Chinesas/farmacologia , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Animais , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Curcumina/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Enzimas/metabolismo , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos BALB C , Ácido Oleanólico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA