Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 50(12): 927-935, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37675456

RESUMO

Ferroptosis is a recently discovered non-apoptotic form of cellular death. Acyl-CoA synthetase long-chain family number 4 (ACSL4) is necessary for iron-dependent cellular death, and reactive oxygen species (ROS) produced by ACSL4 are the executioners of ferroptosis. Rosiglitazone improves ferroptosis by inhibiting ACSL4. There is no research indicating whether ACSL4 plays a role in cell death after surgical brain injury (SBI). This study aimed to investigate the role of ACSL4 in SBI via the ferroptosis pathway. Ninety male Sprague-Dawley rats were examined using a model of SBI. Subsequently, the inhibitory effect of rosiglitazone on ACSL4 was assessed via western blot, real-time polymerase chain reaction (PCR), immunofluorescence, fluoro-jade C staining, Perl's staining, ROS assay, and neurological scoring. The results showed that compared with the Sham group, the protein levels of ACSL4 and transferrin were significantly increased after SBI. Administration of rosiglitazone significantly reduced neuronal necrosis, iron deposition, brain water content and ROS in brain tissue and ameliorated neurological deficits at 48 h after SBI, which was concomitant with decreased transferrin expression. These findings demonstrate that SBI-induced upregulation of ACSL4 may be partly mediated by the ferroptosis pathway, which can be reversed by rosiglitazone administration.


Assuntos
Lesões Encefálicas , Neoplasias Encefálicas , Ratos , Masculino , Animais , Rosiglitazona/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Encéfalo/metabolismo , Lesões Encefálicas/tratamento farmacológico , Ferro , Transferrinas/metabolismo , Ligases/metabolismo
2.
Arch Biochem Biophys ; 700: 108774, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33548212

RESUMO

Homoharringtonine (HHT), an approved anti-leukemic alkaloid, has been reported effectively in many types of tumor cells. However, its effect on melanoma cells has not been investigated. And the anti-melanoma mechanism of HHT is still unknown. In this study, we detected the effects of HHT on two melanoma cell lines (A375 and B16F10) and on the A375 xenograft mouse model. HHT significantly inhibited the proliferation of melanoma cells as investigated by the CCK8 method, cell cloning assay, and EdU experiment. HHT induced A375 and B16F10 cells DNA damage, apoptosis, and G2/M cell cycle arrest as proved by TdT-mediated dUTP Nick-End Labeling (TUNEL) and flow cytometry assay. Additionally, the loss of mitochondrial membrane potential in HHT-treated cells were visualized by JC-1 fluorescent staining. For the molecule mechanism study, western blotting results indicated the protein expression levels of ATM, P53, p-P53, p-CHK2, γ-H2AX, PARP, cleaved-PARP, cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, Aurka, p-Aurka, Plk1, p-Plk1, Cdc25c, CDK1, cyclin B1, and Myt1 were regulated by HHT. And the relative mRNA expression level of Aurka, Plk1, Cdc25c, CDK1, cyclin B1, and Myt1 were ascertained by q-PCR assay. The results in vivo experiment showed that HHT can slow down the growth rate of tumors. At the same time, the protein expression levels in vivo were consistent with that in vitro. Collectively, our study provided evidence that HHT could be considered an effective anti-melanoma agent by inducing DNA damage, apoptosis, and cell cycle arrest.


Assuntos
Dano ao DNA/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Mepesuccinato de Omacetaxina/farmacologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Melanoma Experimental , Animais , Apoptose , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Proteínas de Neoplasias/biossíntese
3.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915902

RESUMO

The urea cycle (UC) removes the excess nitrogen and ammonia generated by nitrogen-containing compound composites or protein breakdown in the human body. Research has shown that changes in UC enzymes are not only related to tumorigenesis and tumor development but also associated with poor survival in hepatocellular, breast, and colorectal cancers (CRC), etc. Cytoplasmic ornithine, the intermediate product of the urea cycle, is a specific substrate for ornithine decarboxylase (ODC, also known as ODC1) for the production of putrescine and is required for tumor growth. Polyamines (spermidine, spermine, and their precursor putrescine) play central roles in more than half of the steps of colorectal tumorigenesis. Given the close connection between polyamines and cancer, the regulation of polyamine metabolic pathways has attracted attention regarding the mechanisms of action of chemical drugs used to prevent CRC, as the drug most widely used for treating type 2 diabetes (T2D), metformin (Met) exhibits antitumor activity against a variety of cancer cells, with a vaguely defined mechanism. In addition, the influence of metformin on the UC and putrescine generation in colorectal cancer has remained unclear. In our study, we investigated the effect of metformin on the UC and putrescine generation of CRC in vivo and in vitro and elucidated the underlying mechanisms. In nude mice bearing HCT116 tumor xenografts, the administration of metformin inhibited tumor growth without affecting body weight. In addition, metformin treatment increased the expression of monophosphate (AMP)-activated protein kinase (AMPK) and p53 in both HCT116 xenografts and colorectal cancer cell lines and decreased the expression of the urea cycle enzymes, including carbamoyl phosphate synthase 1 (CPS1), arginase 1 (ARG1), ornithine trans-carbamylase (OTC), and ODC. The putrescine levels in both HCT116 xenografts and HCT116 cells decreased after metformin treatment. These results demonstrate that metformin inhibited CRC cell proliferation via activating AMPK/p53 and that there was an association between metformin, urea cycle inhibition and a reduction in putrescine generation.


Assuntos
Neoplasias Colorretais/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Metformina/farmacologia , Putrescina/biossíntese , Ureia/metabolismo , Animais , Biomarcadores , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Zhongguo Zhong Yao Za Zhi ; 42(1): 146-151, 2017 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-28945040

RESUMO

To study the effect of ginseng saponin Rh2 in inducing apoptosis of human leukemia K562 cells, and explore its mechanism from the aspect of autophagy pathway. CCK-8 assay was used to examine the growth inhibition of human leukemia cell lines K562 treated with ginsenoside Rh2; flow cytometry (FCM) was used to detect cell apoptosis; Hoechst staining was used to observe the changes of cell morphological apoptosis; Acridine and MDC staining were used to detect the effects of the Rh2 on autophagy; Western blot and RT-PCR were used to detect the expression levels of the proteins closely associated with autophagy and apoptosis. In order to study the effect of autophagy in proliferation and apoptosis, we used the autophagy inhibitor (3-MA).CCK-8 indicated that Rh2 at low concentration could effectively inhibit the proliferation of leukemia cellsin dose- and time-dependent manners in K562 cells; FCM indicated that Rh2 induced apoptosis; Hoechest staining showed that K562 cells had typical apoptotic morphological changes by treated Rh2; Acridine and MDC staining showed that Rh2 enhanced the green fluorescence and a large number of acidic autophagy vesicles were present; Western blot and RT-PCR results showed that Rh2 increased the expression levels of Beclin-1, LC3A, LC3B, activated Caspase-3 and p-p38 in K562 cells; application of autophagy inhibitors(3-MA) could weaken the inhibition effect of Rh2 on proliferation and induction effect on apoptosis in K562 cells. Ginsenoside Rh2 inhibited the proliferation and induced apoptosis probably through activating p-p38, and inducing cell autophagy signaling pathway in K562 cells.


Assuntos
Apoptose , Autofagia , Ginsenosídeos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proliferação de Células , Humanos , Células K562
5.
Iran J Basic Med Sci ; 27(7): 888-894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800035

RESUMO

Objectives: Sox11, one of the SoxC family members, is an important transcription factor during neural development and neurogenesis. However, there is no report about its function in neural apoptosis. This research aims to examine the function of Sox11 in surgical brain injury (SBI). Materials and Methods: We used 90 Sprague-Dawley rats to develop the SBI models and the siRNA of Sox11 to study the roles of Sox11. Western blot, real-time PCR, immunofluorescence, neuron apoptosis and necrosis, brain edema, and neurological score were determined. Results: The gene and protein amount of Sox11, compared with the Sham group, were increased after SBI, which reached a peak at 12 hr. In addition, following the application of siRNAs, the amount of Sox11 protein was significantly less than that in the SBI group. On the other hand, neuronal apoptosis, necrosis, and brain edema were significantly increased, while neurological scores were decreased. Conclusion: These findings demonstrate the role of Sox11 following nerve injury induced by SBI. Inhibition of Sox11 with siRNA may lead to neuronal injury and cell death, aggravating secondary brain injury after SBI.

6.
Int Immunopharmacol ; 129: 111630, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38320355

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) incessantly engenders mutating strains via immune escape mechanisms, substantially escalating the risk of severe acute respiratory syndrome. In this context, the urgent development of innovative and efficacious mRNA vaccines is imperative. In our study, we synthesized six unique mRNA vaccine formulations: the Receptor Binding Domain (RBD) monomer vaccine, RBD dimer (2RBD) vaccine, RBD-Ferritin (RBD-Fe) vaccine, ubiquitin-modified wild-type Nucleocapsid gene (WT-N) vaccine, rearranged Nucleocapsid gene (Re-N) vaccine, and an epitope-based (COVID-19 epitope) vaccine, all encapsulated within the lipid nanoparticle SM102. Immunization studies conducted on C57BL/6 mice with these vaccines revealed that the RBD monomer, RBD dimer (2RBD), and RBD-Fe vaccines elicited robust titers of specific antibodies, including neutralizing antibodies. In contrast, the wild-type N gene (WT-N), rearrange N gene (Re-N), and COVID-19 epitope vaccines predominantly induced potent cellular immune responses. Protective efficacy assays in golden hamsters demonstrated that vaccinated cohorts showed significant reduction in lung pathology, markedly lower viral loads in the lungs, nasal turbinates, and trachea, and substantially reduced transcriptional and expression levels of pro-inflammatory cytokines. Overall, our vaccine candidates pave the way for novel strategies in vaccine development against various infectious agents and establish a critical foundation for the formulation of advanced vaccines targeting emerging pathogens.


Assuntos
COVID-19 , Vacinas de mRNA , Camundongos , Animais , Cricetinae , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Ferritinas/genética , COVID-19/prevenção & controle , Ubiquitinação , Vacinas contra COVID-19 , Anticorpos Neutralizantes , Epitopos , Imunidade , Anticorpos Antivirais
7.
Food Funct ; 14(7): 3155-3168, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36883482

RESUMO

The response of macrophages to environmental signals demonstrates its heterogeneity and plasticity. After different forms of polarized activation, macrophages reach the M1 or M2 activation state according to their respective environment. Ganoderma lucidum polysaccharide (GLPS) is a major bioactive component of Ganoderma lucidum, a well-known medicinal mushroom. Although the immunomodulatory and anti-tumor effects of GLPS have been proven, GLPS's effect on inhibiting hepatocellular carcinoma (HCC) by regulating macrophage polarization is little known. Our data showed that GLPS notably inhibited the growth of a Hepa1-6 allograft. The expression of M1 marker CD86 was higher in the tumor tissue of the GLPS treatment group than in the control group in vivo. In vitro, the phagocytic activity and NO production of macrophages were increased by GLPS treatment. Moreover, it was discovered that GLPS was able to increase the expression of the M1 phenotype marker CD86, iNOS, and pro-inflammatory cytokines comprising IL-12a, IL-23a, IL-27 and TNF-α, but inhibited macrophage polarization towards the M2 phenotype by decreasing the expression of CD206, Arg-1, and inflammation-related cytokines comprising IL-6 and IL-10. The data suggest that GLPS may regulate macrophage polarization. Mechanistically, GLPS increased the phosphorylation of MEK and ERK. In addition, the phosphorylation of IκBα and P65 was increased by GLPS treatment. These data showed that GLPS can regulate the MAPK/NF-κB signaling pathway responsible for M1 polarization. In a nutshell, our research puts forward a new application of GLPS in anti-HCC treatment by regulating macrophage polarization through activating MAPK/NF-κB signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Reishi , NF-kappa B/metabolismo , Reishi/metabolismo , Transdução de Sinais , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Macrófagos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Citocinas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo
8.
Front Mol Neurosci ; 14: 641993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867933

RESUMO

Surgical brain injury (SBI) triggers microglia to release numerous inflammatory factors, leading to brain edema and neurological dysfunction. Reducing neuroinflammation and protecting the blood-brain barrier (BBB) are key factors to improve the neurological function and prognosis after SBI. Na+-K+-Cl- cotransporter 1 (NKCC1) and nuclear factor κB (NF-κB) have been implicated in the secretion of inflammatory cytokines by microglia in brain injury. This study aimed to establish the role of NKCC1 in inducing inflammation in SBI, as well as to determine whether NKCC1 controls the release of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) via phosphorylation of NF-κB in microglia, thus affecting BBB permeability and neuronal cell apoptosis. Male Sprague-Dawley (SD) rats were used to establish an SBI model. This study revealed that compared with the sham group, the expression levels of p-NKCC1, p-p65-NF-κB, and related inflammatory factor proteins in SBI model group significantly increased. After p-NKCC1 was inhibited, p-p65-NF-κB, IL-6, IL-1ß, and TNF-α were downregulated, and nerve cell apoptosis and BBB permeability were significantly reduced. These findings suggest that the SBI-induced increase in p-NKCC1 exacerbates neuroinflammation, brain edema, and nerve function injury, which may be mediated by regulating the activity of p65-NF-κB that in turn influences the release of inflammatory factors.

9.
Front Surg ; 8: 749310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071308

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is considered as a potential target for the treatment of Parkinson's disease. This protein is expressed in the brain and has been associated with various diseases and lysosomal maintenance. Rab10 is a member of the Rab protein GTPase family that has been recently shown to be a kinase substrate of LRRK2. In addition, LRRK2 and its kinase substrate Rab10 constitute a key stress response pathway during lysosomal overload stress. This study aimed to investigate the potential role and mechanism underlying LRRK2 and its kinase substrate Rab10 involving surgical brain injury (SBI). One hundred and forty-four male Sprague-Dawley rats were examined using an SBI model, and some had received the LRRK2-specific inhibitor PF-06447475. Thereafter, western blotting, immunofluorescence, brain water content analysis, neuronal apoptosis assay, and neurological score analysis were conducted. The results showed that after SBI, LRRK2 and phosphorylated Rab10 (p-Rab10) expression in neuronal cells were upregulated, and administration of PF-06447475 significantly reduced neuronal apoptosis, neuroinflammation, and brain water content 12 h after SBI and improved neurological deficit 72 h after SBI, which is related to the decreased expression of LRRK2 and p-Rab10, and the lessening of lysosomal overload stress. Our research suggests that the inhibition of LRRK2 can effectively interfere with the role of p-Rab10 in promoting the secretion of lysosomal hydrolase in lysosomal overload stress after SBI, thereby reducing neuronal apoptosis and inflammation after SBI and playing a major role in brain protection.

10.
Am J Transl Res ; 13(2): 732-742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33594322

RESUMO

Protein kinase R-like endoplasmic reticulum kinase (PERK) is an important transmembrane protein in the endoplasmic reticulum (ER). PERK signaling has a critical function in neuronal apoptosis. This work aimed to assess PERK signaling for its function in surgical brain injury (SBI) and to explore the underlying mechanisms. Totally 120 male Sprague Dawley (SD) rats were assessed in an SBI model. The effects of the PERK inhibitor GSK2606414 were examined by Western-blot, immunofluorescent staining, TUNEL staining, fluoro-jade C (FJC) staining and neurological assays in rats with SBI. In this study, p-PERK and p-eIF2α protein amounts were increased upon SBI establishment, peaking at 24 h. Meanwhile, administration of GSK2606414 reversed these effects and prevented neuronal apoptosis. The PERK pathway has a significant function in neuronal apoptosis, and its suppression after SBI promotes the alleviation of brain injury. This suggests that targeting the PERK signaling pathway may represent an efficient therapeutic option for improving prognosis in SBI patients.

11.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760209

RESUMO

With­no­lysine kinase 3 (WNK3) is a serine/threonine kinase that functions by regulating downstream signaling molecules. WNK3 mainly regulates intracellular and extracellular Na+, Cl­ and K+ levels by regulating downstream ion transporters, the disruption of which has been associated with cerebral ischemia, epilepsy, glioma and other diseases. In addition, WNK3 was demonstrated to regulate neuronal splicing factor RNA binding fox­1 homolog­1 to influence autism. Over the past 20 years, accumulating evidence has reported that dysfunctional WNK3 signaling was involved in the pathologies of various neurological disorders; therefore, WNK3 has become a promising therapeutic target for ameliorating the corresponding symptoms of such disorders. The present review aimed to provide a general overview of the expression patterns and physiological functions of WNK3 signaling and its pathophysiological roles in neurological diseases, such as epilepsy, ischemic brain injury, intracerebral hemorrhage, autism, glioma and schizophrenia.


Assuntos
Hemorragia Cerebral/genética , Transporte de Íons/genética , Doenças do Sistema Nervoso/genética , Proteínas Serina-Treonina Quinases/genética , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Hemorragia Cerebral/patologia , Epilepsia/genética , Epilepsia/patologia , Humanos , Doenças do Sistema Nervoso/patologia , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/genética
12.
Life Sci ; 251: 117424, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32057900

RESUMO

AIMS: Dysfunction of the Hippo-Yes-Associated Protein (YAP) signaling pathway is known to be associated with hepatocellular carcinoma (HCC). Evodiamine (Evo), a plant-derived bioactive alkaloid, exerts inhibitory effects on cancer. However, the precise influence of Evo on HCC and its potential effects on Hippo-YAP signaling have yet to be ascertained. Here, the effects of Evo on cell proliferation and apoptosis were evaluated using HCC cell lines (HepG2 and Bel-7402) and nude mice with xenograft tumors. We further investigated whether Evo exerts anti-HCC activity through effects on Hippo-YAP signaling in vitro with the aid of XMU-MP-1, an inhibitor of the key component of this pathway, mammalian sterile 20-like kinase 1/2. MAIN METHODS: Cell proliferation and apoptosis were assessed using 5-ethynyl-2'-deoxyuridine staining, colony formation, flow cytometry, hematoxylin-eosin and dUTP nick-end labeling experiments. Bioinformatics and real-time quantitative polymerase chain reaction (RT-qPCR) arrays were performed to determine the associations among Evo, HCC progression and the Hippo-YAP pathway. The expression patterns of components of Hippo-YAP signaling and apoptotic genes were further examined via RT-qPCR and immunoblotting. KEY FINDINGS: Evo inhibited proliferation and promoted apoptosis of HCC cell lines in vitro, and attenuated xenograft tumor formation in nude mice in vivo. Mechanistically, Evo treatment stimulated the Hippo-YAP signaling pathway. In vitro, the effects of Evo on HCC cell proliferation and apoptosis were alleviated by XMU-MP-1. SIGNIFICANCE: Our collective results revealed that the anti-HCC effects of Evo were correlated with the Hippo-YAP signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Quinazolinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células Hep G2 , Via de Sinalização Hippo , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA