Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(18): e2308958, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38189638

RESUMO

Efficient transceivers and antennas at terahertz frequencies are leading the development of 6G terahertz communication systems. The antenna design for high-resolution terahertz spatial sensing and communication remains challenging, while emergent metallic metasurface antennas can address this issue but often suffer from low efficiency and complex manufacturing. Here, an all-dielectric integrated meta-antenna operating in 6G terahertz communication window for high-efficiency beam focusing in the sub-wavelength scale is reported. With the antenna surface functionalized by metagrating arrays with asymmetric scattering patterns, the design and optimization methods are demonstrated with a physical size constraint. The highest manipulation and diffraction efficiencies achieve 84.1% and 48.1%. The commercially accessible fabrication method with low cost and easy to implement has been demonstrated for the meta-antenna by photocuring 3D printing. A filamentous focal spot is measured as 0.86λ with a long depth of focus of 25.3λ. Its application for integrated imaging and communication has been demonstrated. The proposed technical roadmap provides a general pathway for creating high-efficiency integrated meta-antennas with great potential in high-resolution 6G terahertz spatial sensing and communication applications.

2.
Sensors (Basel) ; 23(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765955

RESUMO

A microwave absolute distance measurement method with ten-micron-level accuracy and meter-level range based on frequency domain interferometry is proposed and experimentally demonstrated for the first time. Theoretical analysis indicates that an interference phenomenon occurs instantaneously in the frequency domain when combining two homologous broad-spectrum microwave beams with different paths, and the absolute value of the distance difference between the two paths is only inversely proportional to the period of frequency domain interference fringes. The proof-of-principle experiments were performed to prove that the proposed method can achieve absolute distance measurement in the X-band with standard deviations of 15 µm, 17 µm, and 26 µm and within ranges of 1.69 m, 2.69 m, and 3.75 m. Additionally, a displacement resolution of 100 microns was realized. The multi-target recognition performance was also verified in principle. Furthermore, at the expense of a slight decrease in ranging accuracy, a fast distance measurement with the single measurement time of 20 µs was achieved by using a digitizer combined with a Fourier transform analyzer. Compared with the current microwave precision ranging technologies, the proposed method not only has the advantages of high precision, large range, and rapid measurement capability, but the required components are also easily obtainable commercial devices. The proposed method also has better complex engineering applicability, because the ten-micron-level ranging accuracy is achievable only by using a simple Fourier transform without any phase estimation algorithm, which greatly reduces the requirement for signal-to-noise ratio.

3.
Opt Lett ; 45(18): 5287-5290, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932513

RESUMO

A high-energy, tunable, long-wave mid-infrared optical parametric oscillator (OPO) based on the BaGa4Se7 crystal was demonstrated in this Letter with 1064 nm laser pumping. The mid-infrared OPO was designed as a double-pass single resonant oscillator (DP-SRO) to reduce the threshold and improve the outputs. Further optimization on the cavity length was theoretically and experimentally studied. With a short cavity length of 30 mm, the output energy of over 1 mJ/pulse at 11 µm was obtained with the pump energy of 39.5 mJ/pulse. In addition, a wide tuning range of 8-14 µm was experimentally achieved by rotating the BaGa4Se7 crystal.

4.
Opt Express ; 27(16): 22808-22818, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510566

RESUMO

An injection pulse-seeded terahertz-wave parametric generator (ips-TPG) has been demonstrated with gain enhancement in wide tuning range. Theoretical analysis denotes that the compensation of initial Stokes energy is favorable to the THz gain enhancement in wide frequency range, which is attributed to the improvement on interaction of stimulated polariton scattering (SPS) and difference frequency generation (DFG) processes. In the experiment, the THz frequency tuning range from 1.04 THz to 5.15 THz was achieved based on near-stoichiometric LiNbO3 (SLN) crystal. Compared with the traditional terahertz parametric oscillator (TPO) under the same experimental conditions, a significant enhancement of THz output energy was occurred in high frequency range. As the THz frequency increased from 1.9 THz to 3.6 THz, the enhancement ratios from 1.6 times to 34.7 times were obtained. Besides, the 3dB bandwidth of ips-TPG was measured to be 2.1 THz, which was about 2.6 times that of SLN-TPO. This THz parametric source with a relative flat gain in wide frequency range is suitable to a variety of practical applications.

5.
Opt Express ; 27(6): 9241-9249, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052731

RESUMO

A high-energy and tunable mid-infrared source based on BaGa4Se7 crystal was demonstrated by single-pass difference-frequency generation (DFG). Orthogonally polarized wave at 1064 nm (λ1) and tunable idler wave (λ2) generated by KTP-OPO, which could be tuned in the wavelength range of 1360-1600 nm, were used as the DFG dual-wavelength pump. The pump parameters including total pump energy and energy ratio were studied. Maximum pulse energy of 5.72 mJ at 3.58 µm was obtained at the dual-wavelength pump energy of 58.4 mJ/pulse. The wavelength tuning range was 3.36-4.27 µm with a flat tunability. Moreover, a saturation phenomenon of DFG output was observed and experimentally inferred to be related to the input energy of λ2 in the BaGa4Se7 crystal.

6.
Opt Lett ; 44(23): 5675-5678, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774750

RESUMO

A tunable dual-color KTP terahertz (THz) wave parametric oscillator (TPO) pumped by a dual-wavelength laser was proposed in this Letter. Theoretical analysis denotes that the emission of a tunable dual-color THz wave can be achieved by the simultaneous stimulated polariton scattering processes from multiple A1-symmetry phonon modes of the KTP crystal. The tunable dual-color THz wave emitted from KTP TPO was demonstrated in our experiment, where the THz frequencies simultaneously tuned from 3.15 THz to 11.63 THz and from 1.47 THz to 6.03 THz with some gaps. The maximum dual-color THz output energy of 1.31 µJ was obtained under the THz frequencies of 5.94 THz and 4.42 THz. Moreover, at a certain phase-matching angle, the THz output energies for the two frequencies were independent, which means that the dual-color THz wave emission with any energy ratio can be achieved by adjusting the pump energy ratio between a dual-wavelength laser.

7.
Opt Express ; 26(5): 6371-6381, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529829

RESUMO

The imaging diagnosis and prognostication of different degrees of traumatic brain injury (TBI) is very important for early care and clinical treatment. Especially, the exact recognition of mild TBI is the bottleneck for current label-free imaging technologies in neurosurgery. Here, we report an automatic evaluation method for TBI recognition with terahertz (THz) continuous-wave (CW) transmission imaging based on machine learning (ML). We propose a new feature extraction method for biological THz images combined with the transmittance distribution features in spatial domain and statistical distribution features in normalized gray histogram. Based on the extracted feature database, ML algorithms are performed for the classification of different degrees of TBI by feature selection and parameter optimization. The highest classification accuracy is up to 87.5%. The area under the curve (AUC) scores of the receiver operating characteristics (ROC) curve are all higher than 0.9, which shows this evaluation method has a good generalization ability. Furthermore, the excellent performance of the proposed system in the recognition of mild TBI is analyzed by different methodological parameters and diagnostic criteria. The system can be extensible to various diseases and will be a powerful tool in automatic biomedical diagnostics.

8.
Opt Express ; 26(16): 20744-20757, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30119380

RESUMO

Terahertz attenuated total reflection imaging has been used to develop preliminary applications without any in-depth analysis of the nature of present systems. Based on our proposed vertically scanning imaging system, an analysis of optimum prism design and polarization selection for error reduction is presented theoretically and experimentally, showing good agreement. By taking the secondary reflection inside the prism and the prism deflection into consideration, p-polarized terahertz waves are recommended for prisms with a base angle below 31°, leading to minimum error. This work will contribute to the development of more practical application of terahertz attenuated total reflection scanning imaging in various fields with enhanced performance.

9.
Opt Express ; 25(8): 8926-8936, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437966

RESUMO

A widely tunable, high-energy terahertz wave parametric oscillator based on 1 mol. % MgO-doped near-stoichiometric LiNbO3 crystal has been demonstrated with 1064 nm nanosecond pulsed laser pumping. The tunable range of 1.16 to 4.64 THz was achieved. The maximum THz wave output energy of 17.49 µJ was obtained at 1.88 THz under the pump energy of 165 mJ/pulse, corresponding to the THz wave conversion efficiency of 1.06 × 10-4 and the photon conversion efficiency of 1.59%, respectively. Moreover, under the same experimental conditions, the THz output energy of TPO with MgO:SLN crystal was about 2.75 times larger than that obtained from the MgO:CLN TPO at 1.60 THz. Based on the theoretical analysis, the THz energy enhancement mechanism in the MgO:SLN TPO was clarified to originate from its larger Raman scattering cross section and smaller absorption coefficient.

10.
Opt Lett ; 41(10): 2262-5, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27176978

RESUMO

A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 µJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 µs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

11.
ACS Appl Mater Interfaces ; 14(49): 55174-55182, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36414393

RESUMO

Recently, tunable metagratings have attracted substantial attention in manipulating the diffraction of electromagnetic waves with considerable flexibility, but they are usually limited to inherent ohmic loss due to the metal layers. The all-dielectric schemes can address this issue, but its design and optimization remain challenging in the terahertz regime, especially in the 6G communication window. In this work, an all-dielectric tunable terahertz metagrating is demonstrated in theoretical and experimental investigations. The metagrating operating in the 6G communication window bends the electromagnetic waves beam into the T-1 diffraction order by optimizing the unit cell. In the experiments, more than 72.46% of the transmitted energy is concentrated in the desired diffraction order for p-polarized light and more than 66.60% for s-polarized light, which agrees well with the theoretical design. The tunability by angular deflection is reported in this all-dielectric metagrating. Then, based on the all-dielectric metagrating arrays, a metalens with numerical aperture of NA = 0.39 at 0.14 THz is demonstrated. The subwavelength scale focal spot is obtained as 2.0 mm × 2.0 mm with the focusing distance of 117.8 mm. Imaging capability of the metalens is performed utilizing the transmission imaging manner. The measured and anticipated results are satisfactorily congruous with one another, which could validate our design. This work paves the way toward designing highly efficient and tunable devices with potential applications in terahertz communications, sensors, and super-resolution imaging.

12.
J Biomed Opt ; 23(3): 1-7, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29595016

RESUMO

We demonstrated that different degrees of experimental traumatic brain injury (TBI) can be differentiated clearly in fresh slices of rat brain tissues using transmission-type terahertz (THz) imaging system. The high absorption region in THz images corresponded well with the injured area in visible images and magnetic resonance imaging results. The THz image and absorption characteristics of dehydrated paraffin-embedded brain slices and the hematoxylin and eosin (H&E)-stained microscopic images were investigated to account for the intrinsic differences in the THz images for the brain tissues suffered from different degrees of TBI and normal tissue aside from water. The THz absorption coefficients of rat brain tissues showed an increase in the aggravation of brain damage, particularly in the high-frequency range, whereas the cell density decreased as the order of mild, moderate, and severe TBI tissues compared with the normal tissue. Our results indicated that the different degrees of TBI were distinguishable owing to the different water contents and probable hematoma components distribution rather than intrinsic cell intensity. These promising results suggest that THz imaging has great potential as an alternative method for the fast diagnosis of TBI.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem Terahertz/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA