Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 42(12): 3871-3883, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37682644

RESUMO

Multiple instance learning (MIL)-based methods have become the mainstream for processing the megapixel-sized whole slide image (WSI) with pyramid structure in the field of digital pathology. The current MIL-based methods usually crop a large number of patches from WSI at the highest magnification, resulting in a lot of redundancy in the input and feature space. Moreover, the spatial relations between patches can not be sufficiently modeled, which may weaken the model's discriminative ability on fine-grained features. To solve the above limitations, we propose a Multi-scale Graph Transformer (MG-Trans) with information bottleneck for whole slide image classification. MG-Trans is composed of three modules: patch anchoring module (PAM), dynamic structure information learning module (SILM), and multi-scale information bottleneck module (MIBM). Specifically, PAM utilizes the class attention map generated from the multi-head self-attention of vision Transformer to identify and sample the informative patches. SILM explicitly introduces the local tissue structure information into the Transformer block to sufficiently model the spatial relations between patches. MIBM effectively fuses the multi-scale patch features by utilizing the principle of information bottleneck to generate a robust and compact bag-level representation. Besides, we also propose a semantic consistency loss to stabilize the training of the whole model. Extensive studies on three subtyping datasets and seven gene mutation detection datasets demonstrate the superiority of MG-Trans.


Assuntos
Processamento de Imagem Assistida por Computador , Semântica
2.
IEEE Trans Med Imaging ; 42(10): 3000-3011, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37145949

RESUMO

Pathological primary tumor (pT) stage focuses on the infiltration degree of the primary tumor to surrounding tissues, which relates to the prognosis and treatment choices. The pT staging relies on the field-of-views from multiple magnifications in the gigapixel images, which makes pixel-level annotation difficult. Therefore, this task is usually formulated as a weakly supervised whole slide image (WSI) classification task with the slide-level label. Existing weakly-supervised classification methods mainly follow the multiple instance learning paradigm, which takes the patches from single magnification as the instances and extracts their morphological features independently. However, they cannot progressively represent the contextual information from multiple magnifications, which is critical for pT staging. Therefore, we propose a structure-aware hierarchical graph-based multi-instance learning framework (SGMF) inspired by the diagnostic process of pathologists. Specifically, a novel graph-based instance organization method is proposed, namely structure-aware hierarchical graph (SAHG), to represent the WSI. Based on that, we design a novel hierarchical attention-based graph representation (HAGR) network to capture the critical patterns for pT staging by learning cross-scale spatial features. Finally, the top nodes of SAHG are aggregated by a global attention layer for bag-level representation. Extensive studies on three large-scale multi-center pT staging datasets with two different cancer types demonstrate the effectiveness of SGMF, which outperforms state-of-the-art up to 5.6% in the F1 score.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA