Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Pulm Med ; 23(1): 287, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550677

RESUMO

BACKGROUND: Pulmonary embolism is a severe cardiovascular disease and can be life-threatening if left untreated. However, the detection rate of pulmonary embolism using existing pretest probability scores remained relatively low and clinical rule out often relied on excessive use of computed tomographic pulmonary angiography. METHODS: We retrospectively collected data from pulmonary embolism suspected patients in Zhongshan Hospital from July 2018 to October 2022. Pulmonary embolism diagnosis and severity grades were confirmed by computed tomographic pulmonary angiography. Patients were randomly divided into derivation and validation set. To construct the Pulmonary Embolism Comprehensive Screening Score (PECSS), we first screened for candidate clinical predictors using univariate logistic regression models. These predictors were then included in a searching algorithm with indicators of Wells score, where a series of points were assigned to each predictor. Optimal D-Dimer cutoff values were investigated and incorporated with PECSS to rule out pulmonary embolism. RESULTS: In addition to Wells score, PECSS identified seven clinical predictors (anhelation, abnormal blood pressure, in critical condition when admitted, age > 65 years and high levels of pro-BNP, CRP and UA,) strongly associated with pulmonary embolism. Patients can be safely ruled out of pulmonary embolism if PECSS ≤ 4, or if 4 < PECSS ≤ 6 and D-Dimer ≤ 2.5 mg/L. Comparing with Wells approach, PECSS achieved lower failure rates across all pulmonary embolism severity grades. These findings were validated in the held-out validation set. CONCLUSIONS: Compared to Wells score, PECSS approaches achieved lower failure rates and better compromise between sensitivity and specificity. Calculation of PECSS is easy and all predictors are readily available upon emergency department admission, making it widely applicable in clinical settings. TRAIL REGISTRATION: The study was retrospectively registered (No. CJ0647) and approved by Human Genetic Resources in China in April 2022. Ethical approval was received from the Medical Ethics Committee of Zhongshan Hospital (NO.B2021-839R).


Assuntos
Angiografia por Tomografia Computadorizada , Embolia Pulmonar , Humanos , Idoso , Angiografia , Tomografia Computadorizada por Raios X , Embolia Pulmonar/diagnóstico , Produtos de Degradação da Fibrina e do Fibrinogênio , Serviço Hospitalar de Emergência
2.
Breast Cancer Res ; 16(4): 406, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25103565

RESUMO

INTRODUCTION: Triple negative breast cancer (TNBC) is a heterogeneous collection of biologically diverse cancers, which contributes to variable clinical outcomes. Previously, we identified a TNBC subtype that has a luminal phenotype and expresses the androgen receptor (AR+). TNBC cells derived from these luminal AR + tumors have high frequency phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutations. The purpose of this study was to determine if targeting phosphoinositide 3-kinase (PI3K) alone or in combination with an AR antagonist is effective in AR + TNBC. METHODS: We determined the frequency of activating PIK3CA mutations in AR + and AR- TNBC clinical cases. Using AR + TNBC cell line and xenograft models we evaluated the effectiveness of PI3K inhibitors, used alone or in combination with an AR antagonist, on tumor cell growth and viability. RESULTS: PIK3CA kinase mutations were highly clonal, more frequent in AR + vs. AR- TNBC (40% vs. 4%), and often associated with concurrent amplification of the PIK3CA locus. PI3K/mTOR inhibitors had an additive growth inhibitory effect when combined with genetic or pharmacological AR targeting in AR + TNBC cells. We also analyzed the combination of bicalutamide +/- the pan-PI3K inhibitor GDC-0941 or the dual PI3K/mTOR inhibitor GDC-0980 in xenograft tumor studies and observed additive effects. CONCLUSIONS: While approximately one third of TNBC patients respond to neoadjuvant/adjuvant chemotherapy, recent studies have shown that patients with AR + TNBC are far less likely to benefit from the current standard of care chemotherapy regimens and novel targeted approaches need to be investigated. In this study, we show that activating PIK3CA mutations are enriched in AR + TNBC; and, we show that the growth and viability of AR + TNBC cell line models is significantly reduced after treatment with PI3K inhibitors used in combination with an AR antagonist. These results provide rationale for pre-selection of TNBC patients with a biomarker (AR expression) to investigate the use of AR antagonists in combination with PI3K/mTOR inhibitors.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Receptores Androgênicos/genética , Neoplasias de Mama Triplo Negativas/genética , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Análise por Conglomerados , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cancer ; 9: 95, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20429933

RESUMO

BACKGROUND: Autophagy is characterized by the sequestration of cytoplasm and organelles into multimembrane vesicles and subsequent degradation by the cell's lysosomal system. It is linked to many physiological functions in human cells including stress response, protein degradation, organelle turnover, caspase-independent cell death and tumor suppression. Malignant transformation is frequently associated with deregulation of autophagy and several tumor suppressors can modulate autophagic processes. The tumor suppressor p53 can induce autophagy after metabolic or genotoxic stress through transcriptionally-dependent and -independent mechanisms. In this study we expand on the former mechanism by functionally characterizing a p53 family target gene, ISG20L1 under conditions of genotoxic stress. RESULTS: We identified a p53 target gene, ISG20L1, and show that transcription of the gene can be regulated by all three p53 family members (p53, p63, and p73). We generated an antibody to ISG20L1 and found that it localizes to the nucleolar and perinucleolar regions of the nucleus and its protein levels increase in a p53- and p73-dependent manner after various forms of genotoxic stress. When ectopically expressed in epithelial cancer-derived cell lines, ISG20L1 expression decreased clonogenic survival without a concomitant elevation in apoptosis and this effect was partially rescued in cells that were ATG5 deficient. Knockdown of ISG20L1 did not alter 5-FU induced apoptosis as assessed by PARP and caspase-3 cleavage, sub-G1 content, and DNA laddering. Thus, we investigated the role of ISG20L1 in autophagy, a process commonly associated with type II cell death, and found that ISG20L1 knockdown decreased levels of autophagic vacuoles and LC3-II after genotoxic stress as assessed by electron microscopy, biochemical, and immunohistochemical measurements of LC3-II. CONCLUSIONS: Our identification of ISG20L1 as a p53 family target and discovery that modulation of this target can regulate autophagic processes further strengthens the connection between p53 signaling and autophagy. Given the keen interest in targeting autophagy as an anticancer therapeutic approach in tumor cells that are defective in apoptosis, investigation of genes and signaling pathways involved in cell death associated with autophagy is critical.


Assuntos
Autofagia/fisiologia , Dano ao DNA/fisiologia , Exodesoxirribonucleases/metabolismo , Regulação da Expressão Gênica , Proteína Supressora de Tumor p53/metabolismo , Western Blotting , Linhagem Celular , Separação Celular , Imunoprecipitação da Cromatina , Exodesoxirribonucleases/genética , Citometria de Fluxo , Imunofluorescência , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Proteína Supressora de Tumor p53/genética
4.
Mol Cell Biol ; 25(22): 10148-58, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16260627

RESUMO

In various human diseases, altered gene expression patterns are often the result of deregulated gene-specific transcription factor activity. To further understand disease on a molecular basis, the comprehensive analysis of transcription factor signaling networks is required. We developed an experimental approach, combining chromatin immunoprecipitation (ChIP) with a yeast-based assay, to screen the genome for transcription factor binding sites that link to transcriptionally regulated target genes. We used the tumor suppressor p53 to demonstrate the effectiveness of the method. Using primary and immortalized, nontransformed cultures of human mammary epithelial cells, we isolated over 100 genomic DNA fragments that contain novel p53 binding sites. This approach led to the identification and validation of novel p53 target genes involved in diverse signaling pathways, including growth factor signaling, protein kinase/phosphatase signaling, and RNA binding. Our results yield a more complete understanding of p53-regulated signaling pathways, and this approach could be applied to any number of transcription factors to further elucidate complex transcriptional networks.


Assuntos
Imunoprecipitação da Cromatina/métodos , Técnicas Genéticas , Ativação Transcricional , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/química , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , Feminino , Formaldeído/farmacologia , Biblioteca Gênica , Substâncias de Crescimento/metabolismo , Humanos , Glândulas Mamárias Humanas/citologia , Modelos Genéticos , Reação em Cadeia da Polimerase , Ligação Proteica , RNA/química , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Transgenes , Proteína Supressora de Tumor p53/metabolismo
5.
Cell Cycle ; 8(22): 3702-6, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19855172

RESUMO

The tumor suppressor p53 is commonly mutated in human cancers. However, two homologs of p53, p63 and p73, are frequently overexpressed in tumors and are associated with tumor subtypes, clinical outcomes, and responses to therapy. There are many isoforms of p53, p63 and p73 (the p53 family). Proper detection of and discrimination between the members of this tumor suppressor family in human tissues is of critical importance to cancer research and clinical care. In this study, we assessed the specificity of several commercially available and newly generated p73 antibodies, focusing on antibodies that distinguish between the TA p73 and DeltaNp73 isoforms by western analysis, immunohistochemistry, and immunofluorescence. In addition, we found that the pan-p63 and pan-p73 antibodies tested cross-react with p73 and p63 respectively. The results of this study have important implications for analysis of p63 and p73 expression and co-expression in human tumors, and for potential use of these reagents in molecular diagnostics and therapeutic decision-making.


Assuntos
Anticorpos/metabolismo , Especificidade de Anticorpos/imunologia , Reações Cruzadas/imunologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Western Blotting , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/imunologia , Imunofluorescência , Humanos , Imuno-Histoquímica , Proteínas Nucleares/imunologia , Transativadores/imunologia , Fatores de Transcrição , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA