Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 43, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829148

RESUMO

BACKGROUND: Undernourishment in utero has deleterious effects on the metabolism of offspring, but the mechanism of the transgenerational transmission of metabolic disorders is not well known. In the present study, we found that undernourishment in utero resulted in metabolic disorders of female F1 and F2 in mouse model. RESULTS: Undernutrition in utero induced metabolic disorders of F1 females, which was transmitted to F2 females. The global methylation in oocytes of F1 exposed to undernutrition in utero was decreased compared with the control. KEGG analysis showed that genes with differential methylation regions (DMRs) in promoters were significantly enriched in metabolic pathways. The altered methylation of some DMRs in F1 oocytes located at the promoters of metabolic-related genes were partially observed in F2 tissues, and the expressions of these genes were also changed. Meanwhile, the abnormal DNA methylation of the validated DMRs in F1 oocytes was also observed in F2 oocytes. CONCLUSIONS: These results indicate that DNA methylation may mediate the transgenerational inheritance of metabolic disorders induced by undernourishment in utero via female germline.


Assuntos
Desnutrição , Doenças Metabólicas , Camundongos , Animais , Feminino , Epigênese Genética , Metilação de DNA , Oócitos
2.
Reproduction ; 157(6): 511-523, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884466

RESUMO

It is demonstrated that repeated superovulation has deleterious effects on mouse ovaries and cumulus cells. However, little is known about the effects of repeated superovulation on early embryos. Epigenetic reprogramming is an important event in early embryonic development and could be easily disrupted by the environment. Thus, we speculated that multiple superovulations may have adverse effects on histone modifications in the early embryos. Female CD1 mice were randomly divided into four groups: (a) spontaneous estrus cycle (R0); (b) with once superovulation (R1); (c) with three times superovulation at a 7-day interval (R3) and (d) with five times superovulation at a 7-day interval (R5). We found that repeated superovulation remarkably decreased the fertilization rate. With the increase of superovulation times, the rate of early embryo development was decreased. The expression of Oct4, Sox2 and Nanog was also affected by superovulation in blastocysts. The immunofluorescence results showed that the acetylation level of histone 4 at lysine 12 (H4K12ac) was significantly reduced by repeated superovulation in mouse early embryos (P < 0.01). Acetylation level of histone 4 at lysine 16 (H4K16ac) was also significantly reduced in pronuclei and blastocyst along with the increase of superovulation times (P < 0.01). H3K9me2 and H3K27me3 were significantly increased in four-cell embryos and blastocysts. We further found that repeated superovulation treatment increased the mRNA level of histone deacetylases Hdac1, Hdac2 and histone methyltransferase G9a, but decreased the expression level of histone demethylase-encoding genes Kdm6a and Kdm6b in early embryos. In a word, multiple superovulations alter histone modifications in early embryos.


Assuntos
Blastocisto/fisiologia , Desenvolvimento Embrionário , Histonas/química , Processamento de Proteína Pós-Traducional , Superovulação/fisiologia , Acetilação , Animais , Blastocisto/citologia , Metilação de DNA , Técnicas de Cultura Embrionária , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Camundongos , Gravidez
3.
Hum Reprod ; 33(3): 474-481, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377995

RESUMO

STUDY QUESTION: What are the effects of high-glucose concentrations on DNA methylation of human oocytes? SUMMARY ANSWER: High-glucose concentrations altered DNA methylation levels of Peg3 and Adiponectin in human in vitro maturation oocytes. WHAT IS KNOWN ALREADY: Maternal diabetes has a detrimental influence on oocyte quality including epigenetic modifications, as shown in non-human mammalian species. STUDY DESIGN, SIZE, DURATION: Immature metaphase I (MI) stage oocytes of good quality were retrieved from patients who had normal ovarian potential and who underwent ICSI in the Reproductive Medicine Center of People's Hospital of Zhengzhou University. MI oocytes were cultured in medium with different glucose concentrations (control, 10 mM and 15 mM) in vitro and 48 h later, oocytes with first polar body extrusion were collected to check the DNA methylation levels. PARTICIPANTS/MATERIALS, SETTING, METHODS: MI oocytes underwent in vitro maturation (IVM) at 37°C with 5% mixed gas for 48 h. Then the mature oocytes were treated with bisulfite buffer. Target sequences were amplified using nested or half-nested PCR and the DNA methylation status was tested using combined bisulfite restriction analysis (COBRA) and bisulfite sequencing (BS). MAIN RESULTS AND THE ROLE OF CHANCE: High-glucose concentrations significantly decreased the first polar body extrusion rate. Compared to controls, the DNA methylation levels of Peg3 in human IVM oocytes were significantly higher in 10 mM (P < 0.001) and 15 mM (P < 0.001) concentrations of glucose. But the DNA methylation level of H19 was not affected by high-glucose concentrations in human IVM oocytes. We also found that there was a decrease in DNA methylation levels in the promoter of adiponectin in human IVM oocytes between controls and oocytes exposed to 10 mM glucose (P = 0.028). LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: It is not clear whether the alterations are beneficial or not for the embryo development and offspring health. The effects of high-glucose concentrations on the whole process of oocyte maturation are still not elucidated. Another issue is that the number of oocytes used in this study was limited. WIDER IMPLICATIONS OF THE FINDINGS: This is the first time that the effects of high-glucose concentration on DNA methylation of human oocytes have been elucidated. Our result indicates that in humans, the high risk of chronic diseases in offspring from diabetic mothers may originate from abnormal DNA modifications in oocytes. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the fund of National Natural Science Foundation of China (81401198) and Doctor Foundation of Qingdao Agricultural University (1116008).The authors declare that there are no potential conflicts of interest relevant to this article.


Assuntos
Adiponectina/genética , Metilação de DNA/efeitos dos fármacos , Glucose/administração & dosagem , Fatores de Transcrição Kruppel-Like/genética , Oócitos/efeitos dos fármacos , Adiponectina/metabolismo , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Humanos , Técnicas de Maturação in Vitro de Oócitos , Fatores de Transcrição Kruppel-Like/metabolismo , Oócitos/metabolismo
4.
Cells ; 8(10)2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547622

RESUMO

After ovulation, mammalian oocytes will undergo a time-dependent process of aging if they are not fertilized. This postovulatory aging (POA) seriously affects the oocyte quality and then impairs the subsequent fertilization and early embryo development, which should be avoided especially in assisted reproductive technology (ART). Resveratrol is an antioxidant substance that can scavenge free radicals and is effective in improving ovary functions. Here, mouse oocytes were used to investigate the effects and mechanisms of resveratrol on POA oocytes in vitro. With 1.0 µM resveratrol treatment during aging process, the rates of fertilization and blastocyst in POA oocytes increased significantly compared with those in the POA group. Resveratrol can reduce the loss of sperm binding sites by stabilizing Juno. Resveratrol can maintain the normal morphology of spindle and mitochondrion distribution and alleviate the levels of ROS and early apoptosis. Additionally, resveratrol can reduce the changes of H3K9me2. Therefore, resveratrol can significantly improve the quality of POA oocytes in vitro to enhance the rates of fertilization and blastocyst, which may be very helpful during the ART process.


Assuntos
Antioxidantes/farmacologia , Fertilização in vitro/efeitos dos fármacos , Oócitos/citologia , Resveratrol/farmacologia , Animais , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Histonas/metabolismo , Técnicas In Vitro , Fase Luteal , Camundongos , Oócitos/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA