Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(40): e2404509121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39316047

RESUMO

N6-methyladenosine (m6A) RNA methylation is a prevalent RNA modification that significantly impacts RNA metabolism and cancer development. Maintaining the global m6A levels in cancer cells relies on RNA accessibility to methyltransferases and the availability of the methyl donor S-adenosylmethionine (SAM). Here, we reveal that death associated protein 3 (DAP3) plays a crucial role in preserving m6A levels through two distinct mechanisms. First, although DAP3 is not a component of the m6A writer complex, it directly binds to m6A target regions, thereby facilitating METTL3 binding. Second, DAP3 promotes MAT2A's last intron splicing, increasing MAT2A protein, cellular SAM, and m6A levels. Silencing DAP3 hinders tumorigenesis, which can be rescued by MAT2A overexpression. This evidence suggests DAP3's role in tumorigenesis, partly through m6A regulation. Our findings unveil DAP3's complex role as an RNA-binding protein and tumor promoter, impacting RNA processing, splicing, and m6A modification in cancer transcriptomes.


Assuntos
Adenosina , Metionina Adenosiltransferase , Metiltransferases , Neoplasias , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/genética , Neoplasias/genética , Neoplasias/metabolismo , Metilação , Linhagem Celular Tumoral , S-Adenosilmetionina/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Splicing de RNA/genética , Animais , Camundongos , RNA/metabolismo , RNA/genética , Processamento Pós-Transcricional do RNA , Metilação de RNA
2.
Circ Res ; 127(6): 761-777, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32529949

RESUMO

RATIONALE: Identifying genetic markers for heterogeneous complex diseases such as heart failure is challenging and requires prohibitively large cohort sizes in genome-wide association studies to meet the stringent threshold of genome-wide statistical significance. On the other hand, chromatin quantitative trait loci, elucidated by direct epigenetic profiling of specific human tissues, may contribute toward prioritizing subthreshold variants for disease association. OBJECTIVE: Here, we captured noncoding genetic variants by performing epigenetic profiling for enhancer H3K27ac chromatin immunoprecipitation followed by sequencing in 70 human control and end-stage failing hearts. METHODS AND RESULTS: We have mapped a comprehensive catalog of 47 321 putative human heart enhancers and promoters. Three thousand eight hundred ninety-seven differential acetylation peaks (FDR [false discovery rate], 5%) pointed to pathways altered in heart failure. To identify cardiac histone acetylation quantitative trait loci (haQTLs), we regressed out confounding factors including heart failure disease status and used the G-SCI (Genotype-independent Signal Correlation and Imbalance) test1 to call out 1680 haQTLs (FDR, 10%). RNA sequencing performed on the same heart samples proved a subset of haQTLs to have significant association also to gene expression (expression quantitative trait loci), either in cis (180) or through long-range interactions (81), identified by Hi-C (high-throughput chromatin conformation assay) and HiChIP (high-throughput protein centric chromatin) performed on a subset of hearts. Furthermore, a concordant relationship between the gain or disruption of TF (transcription factor)-binding motifs, inferred from alternative alleles at the haQTLs, implied a surprising direct association between these specific TF and local histone acetylation in human hearts. Finally, 62 unique loci were identified by colocalization of haQTLs with the subthreshold loci of heart-related genome-wide association studies datasets. CONCLUSIONS: Disease and phenotype association for 62 unique loci are now implicated. These loci may indeed mediate their effect through modification of enhancer H3K27 acetylation enrichment and their corresponding gene expression differences (bioRxiv: https://doi.org/10.1101/536763). Graphical Abstract: A graphical abstract is available for this article.


Assuntos
Epigenoma , Variação Genética , Insuficiência Cardíaca/genética , Histonas/genética , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Bases de Dados Genéticas , Epigênese Genética , Epigenômica , Feminino , Predisposição Genética para Doença , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Locos de Características Quantitativas
3.
Mol Ther ; 29(11): 3258-3273, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33974998

RESUMO

Dysregulated adenosine-to-inosine (A-to-I) RNA editing is implicated in various cancers. However, no available RNA editing inhibitors have so far been developed to inhibit cancer-associated RNA editing events. Here, we decipher the RNA secondary structure of antizyme inhibitor 1 (AZIN1), one of the best-studied A-to-I editing targets in cancer, by locating its editing site complementary sequence (ECS) at the 3' end of exon 12. Chemically modified antisense oligonucleotides (ASOs) that target the editing region of AZIN1 caused a substantial exon 11 skipping, whereas ECS-targeting ASOs effectively abolished AZIN1 editing without affecting splicing and translation. We demonstrate that complete 2'-O-methyl (2'-O-Me) sugar ring modification in combination with partial phosphorothioate (PS) backbone modification may be an optimal chemistry for editing inhibition. ASO3.2, which targets the ECS, specifically inhibits cancer cell viability in vitro and tumor incidence and growth in xenograft models. Our results demonstrate that this AZIN1-targeting, ASO-based therapeutics may be applicable to a wide range of tumor types.


Assuntos
Proteínas de Transporte/genética , Marcação de Genes , Edição de RNA , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Modelos Animais de Doenças , Éxons , Regulação Neoplásica da Expressão Gênica , Marcação de Genes/métodos , Terapia Genética/métodos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/terapia , Oligonucleotídeos Antissenso/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Hepatol ; 74(1): 135-147, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693003

RESUMO

BACKGROUND & AIMS: RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant adenosine-to-inosine RNA editing is implicated in cancers. Until now, very few functionally important protein-recoding editing targets have been discovered. Here, we investigated the role of a recently discovered protein-recoding editing target COPA (coatomer subunit α) in hepatocellular carcinoma (HCC). METHODS: Clinical implication of COPA editing was studied in a cohort of 125 HCC patients. CRISPR/Cas9-mediated knockout of the editing site complementary sequence (ECS) was used to delete edited COPA transcripts endogenously. COPA editing-mediated change in its transcript or protein stability was investigated upon actinomycin D or cycloheximide treatment, respectively. Functional difference in tumourigenesis between wild-type and edited COPA (COPAWTvs. COPAI164V) and the exact mechanisms were also studied in cell models and mice. RESULTS: ADAR2 binds to double-stranded RNA formed between edited exon 6 and the ECS at intron 6 of COPA pre-mRNA, causing an isoleucine-to-valine substitution at residue 164. Reduced editing of COPA is implicated in the pathogenesis of HCC, and more importantly, it may be involved in many cancer types. Upon editing, COPAWT switches from a tumour-promoting gene to a tumour suppressor that has a dominant-negative effect. Moreover, COPAI164V may undergo protein conformational change and therefore become less stable than COPAWT. Mechanistically, COPAI164V may deactivate the PI3K/AKT/mTOR pathway through downregulation of caveolin-1 (CAV1). CONCLUSIONS: We uncover an RNA editing-associated mechanism of hepatocarcinogenesis by which downregulation of ADAR2 caused the loss of tumour suppressive COPAI164V and concurrent accumulation of tumour-promoting COPAWT in tumours; a rapid degradation of COPAI164V protein and hyper-activation of the PI3K/AKT/mTOR pathway further promote tumourigenesis. LAY SUMMARY: RNA editing is a process in which RNA is changed after it is made from DNA, resulting in an altered gene product. In this study, we found that RNA editing of a gene known as coatomer subunit α (COPA) is lower in tumour samples and discovered that this editing process changes COPA protein from a tumour-promoting form to a tumour-suppressive form. Loss of the edited COPA promotes the development of liver cancer.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular , Proteína Coatomer/genética , Regulação da Expressão Gênica/genética , Neoplasias Hepáticas , Edição de RNA/genética , Adenosina Desaminase/genética , Animais , Sequência de Bases , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Caveolina 1/metabolismo , Linhagem Celular , Regulação para Baixo , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Camundongos , Proteínas de Neoplasias , Estabilidade Proteica , Proteínas de Ligação a RNA/genética
5.
Nucleic Acids Res ; 46(15): 7953-7969, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29796672

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing entails the enzymatic deamination of adenosines to inosines by adenosine deaminases acting on RNA (ADARs). Dysregulated A-to-I editing has been implicated in various diseases, including cancers. However, the precise factors governing the A-to-I editing and their physiopathological implications remain as a long-standing question. Herein, we unravel that DEAH box helicase 9 (DHX9), at least partially dependent of its helicase activity, functions as a bidirectional regulator of A-to-I editing in cancer cells. Intriguingly, the ADAR substrate specificity determines the opposing effects of DHX9 on editing as DHX9 silencing preferentially represses editing of ADAR1-specific substrates, whereas augments ADAR2-specific substrate editing. Analysis of 11 cancer types from The Cancer Genome Atlas (TCGA) reveals a striking overexpression of DHX9 in tumors. Further, tumorigenicity studies demonstrate a helicase-dependent oncogenic role of DHX9 in cancer development. In sum, DHX9 constitutes a bidirectional regulatory mode in A-to-I editing, which is in part responsible for the dysregulated editome profile in cancer.


Assuntos
Adenosina/metabolismo , RNA Helicases DEAD-box/metabolismo , Inosina/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Edição de RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Desaminação , Doxorrubicina/farmacologia , Células HEK293 , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Nucleic Acids Res ; 45(18): 10436-10451, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28985428

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by Adenosine DeAminases acting on double-stranded RNA(dsRNA) (ADAR), occurs predominantly in the 3' untranslated regions (3'UTRs) of spliced mRNA. Here we uncover an unanticipated link between ADARs (ADAR1 and ADAR2) and the expression of target genes undergoing extensive 3'UTR editing. Using METTL7A (Methyltransferase Like 7A), a novel tumor suppressor gene with multiple editing sites at its 3'UTR, we demonstrate that its expression could be repressed by ADARs beyond their RNA editing and double-stranded RNA (dsRNA) binding functions. ADARs interact with Dicer to augment the processing of pre-miR-27a to mature miR-27a. Consequently, mature miR-27a targets the METTL7A 3'UTR to repress its expression level. In sum, our study unveils that the extensive 3'UTR editing of METTL7A is merely a footprint of ADAR binding, and there are a subset of target genes that are equivalently regulated by ADAR1 and ADAR2 through their non-canonical RNA editing and dsRNA binding-independent functions, albeit maybe less common. The functional significance of ADARs is much more diverse than previously appreciated and this gene regulatory function of ADARs is most likely to be of high biological importance beyond the best-studied editing function. This non-editing side of ADARs opens another door to target cancer.


Assuntos
Adenosina Desaminase/metabolismo , Redes Reguladoras de Genes/fisiologia , Neoplasias/genética , Edição de RNA , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/genética , Adenosina/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Inosina/metabolismo , Neoplasias/metabolismo , Células Tumorais Cultivadas
7.
J Biol Chem ; 291(27): 14311-14323, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226545

RESUMO

Here we present a detailed analysis of the alternative splicing regulation of human CD46, which generates different isoforms with distinct functions. CD46 is a ubiquitous membrane protein that protects host cells from complement and plays other roles in immunity, autophagy, and cell adhesion. CD46 deficiency causes an autoimmune disorder, and this protein is also involved in pathogen infection and cancer. Before this study, the mechanisms of CD46 alternative splicing remained unexplored even though dysregulation of this process has been associated with autoimmune diseases. We proved that the 5' splice sites of CD46 cassette exons 7 and 8 encoding extracellular domains are defined by noncanonical mechanisms of base pairing to U1 small nuclear RNA. Next we characterized the regulation of CD46 cassette exon 13, whose inclusion or skipping generates different cytoplasmic tails with distinct functions. Using splicing minigenes, we identified multiple exonic and intronic splicing enhancers and silencers that regulate exon 13 inclusion via trans-acting splicing factors like PTBP1 and TIAL1. Interestingly, a common splicing activator such as SRSF1 appears to repress CD46 exon 13 inclusion. We also report that expression of CD46 mRNA isoforms is further regulated by non-sense-mediated mRNA decay and transcription speed. Finally, we successfully manipulated CD46 exon 13 inclusion using antisense oligonucleotides, opening up opportunities for functional studies of the isoforms as well as for therapeutics for autoimmune diseases. This study provides insight into CD46 alternative splicing regulation with implications for its function in the immune system and for genetic disease.


Assuntos
Processamento Alternativo , Proteína Cofatora de Membrana/genética , RNA/genética , Sequência de Bases , Elementos Facilitadores Genéticos , Éxons , Inativação Gênica , Células HEK293 , Humanos
8.
Cell Rep ; 43(7): 114400, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935501

RESUMO

ADAR1-mediated RNA editing establishes immune tolerance to endogenous double-stranded RNA (dsRNA) by preventing its sensing, primarily by MDA5. Although deleting Ifih1 (encoding MDA5) rescues embryonic lethality in ADAR1-deficient mice, they still experience early postnatal death, and removing other MDA5 signaling proteins does not yield the same rescue. Here, we show that ablation of MDA5 in a liver-specific Adar knockout (KO) murine model fails to rescue hepatic abnormalities caused by ADAR1 loss. Ifih1;Adar double KO (dKO) hepatocytes accumulate endogenous dsRNAs, leading to aberrant transition to a highly inflammatory state and recruitment of macrophages into dKO livers. Mechanistically, progranulin (PGRN) appears to mediate ADAR1 deficiency-induced liver pathology, promoting interferon signaling and attracting epidermal growth factor receptor (EGFR)+ macrophages into dKO liver, exacerbating hepatic inflammation. Notably, the PGRN-EGFR crosstalk communication and consequent immune responses are significantly repressed in ADAR1high tumors, revealing that pre-neoplastic or neoplastic cells can exploit ADAR1-dependent immune tolerance to facilitate immune evasion.


Assuntos
Adenosina Desaminase , Receptores ErbB , Hepatócitos , Helicase IFIH1 Induzida por Interferon , Fígado , Macrófagos , Camundongos Knockout , Progranulinas , Animais , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Receptores ErbB/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Progranulinas/metabolismo , Progranulinas/genética , Fígado/metabolismo , Fígado/imunologia , Fígado/patologia , Hepatócitos/metabolismo , Camundongos , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Transdução de Sinais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Endogâmicos C57BL , RNA de Cadeia Dupla/metabolismo , Edição de RNA
9.
ACS Nano ; 17(21): 21639-21661, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37852618

RESUMO

The COVID-19 pandemic has resulted in a large number of fatalities and, at present, lacks a readily available curative treatment for patients. Here, we demonstrate that unmodified red blood cell-derived extracellular vesicles (RBCEVs) can inhibit SARS-CoV-2 infection in a phosphatidylserine (PS) dependent manner. Using T cell immunoglobulin mucin domain-1 (TIM-1) as an example, we demonstrate that PS receptors on cells can significantly increase the adsorption and infection of authentic and pseudotyped SARS-CoV-2 viruses. RBCEVs competitively inhibit this interaction and block TIM-1-mediated viral entry into cells. We further extend the therapeutic efficacy of this antiviral treatment by loading antisense oligonucleotides (ASOs) designed to target conserved regions of key SARS-CoV-2 genes into RBCEVs. We establish that ASO-loaded RBCEVs are efficiently taken up by cells in vitro and in vivo to suppress SARS-CoV-2 replication. Our findings indicate that this RBCEV-based SARS-CoV-2 therapeutic displays promise as a potential treatment capable of inhibiting SARS-CoV-2 entry and replication.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , Antivirais/farmacologia , Oligonucleotídeos , Pandemias , SARS-CoV-2 , Eritrócitos
10.
Nat Commun ; 13(1): 1793, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379802

RESUMO

The dynamic regulation of alternative splicing requires coordinated participation of multiple RNA binding proteins (RBPs). Aberrant splicing caused by dysregulation of splicing regulatory RBPs is implicated in numerous cancers. Here, we reveal a frequently overexpressed cancer-associated protein, DAP3, as a splicing regulatory RBP in cancer. Mechanistically, DAP3 coordinates splicing regulatory networks, not only via mediating the formation of ribonucleoprotein complexes to induce substrate-specific splicing changes, but also via modulating splicing of numerous splicing factors to cause indirect effect on splicing. A pan-cancer analysis of alternative splicing across 33 TCGA cancer types identified DAP3-modulated mis-splicing events in multiple cancers, and some of which predict poor prognosis. Functional investigation of non-productive splicing of WSB1 provides evidence for establishing a causal relationship between DAP3-modulated mis-splicing and tumorigenesis. Together, our work provides critical mechanistic insights into the splicing regulatory roles of DAP3 in cancer development.


Assuntos
Processamento Alternativo , Neoplasias , Processamento Alternativo/genética , Proteínas Reguladoras de Apoptose/genética , Humanos , Neoplasias/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Nat Commun ; 13(1): 1508, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314703

RESUMO

Circular RNAs (circRNAs) are produced by head-to-tail back-splicing which is mainly facilitated by base-pairing of reverse complementary matches (RCMs) in circRNA flanking introns. Adenosine deaminases acting on RNA (ADARs) are known to bind double-stranded RNAs for adenosine to inosine (A-to-I) RNA editing. Here we characterize ADARs as potent regulators of circular transcriptome by identifying over a thousand of circRNAs regulated by ADARs in a bidirectional manner through and beyond their editing function. We find that editing can stabilize or destabilize secondary structures formed between RCMs via correcting A:C mismatches to I(G)-C pairs or creating I(G).U wobble pairs, respectively. We provide experimental evidence that editing also favors the binding of RNA-binding proteins such as PTBP1 to regulate back-splicing. These ADARs-regulated circRNAs which are ubiquitously expressed in multiple types of cancers, demonstrate high functional relevance to cancer. Our findings support a hitherto unappreciated bidirectional regulation of circular transcriptome by ADARs and highlight the complexity of cross-talk in RNA processing and its contributions to tumorigenesis.


Assuntos
Neoplasias , Edição de RNA , Adenosina/metabolismo , Adenosina Desaminase/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Circular/genética , RNA de Cadeia Dupla , Transcriptoma
12.
Sci Adv ; 6(25): eaba5136, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32596459

RESUMO

RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant A-to-I RNA editing profiles are implicated in cancers. Albeit changes in expression and activity of ADAR genes are thought to have been responsible for the dysregulated RNA editome in diseases, they are not always correlated, indicating the involvement of secondary regulators. Here, we uncover DAP3 as a potent repressor of editing and a strong oncogene in cancer. DAP3 mainly interacts with the deaminase domain of ADAR2 and represses editing via disrupting association of ADAR2 with its target transcripts. PDZD7, an exemplary DAP3-repressed editing target, undergoes a protein recoding editing at stop codon [Stop →Trp (W)]. Because of editing suppression by DAP3, the unedited PDZD7WT, which is more tumorigenic than edited PDZD7Stop518W, is accumulated in tumors. In sum, cancer cells may acquire malignant properties for their survival advantage through suppressing RNA editome by DAP3.


Assuntos
Adenosina , Proteínas Reguladoras de Apoptose , Neoplasias , Proteínas de Ligação a RNA , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Inosina/genética , Inosina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Nat Commun ; 11(1): 799, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034135

RESUMO

RNA editing and splicing are the two major processes that dynamically regulate human transcriptome diversity. Despite growing evidence of crosstalk between RNA editing enzymes (mainly ADAR1) and splicing machineries, detailed mechanistic explanations and their biological importance in diseases, such as cancer are still lacking. Herein, we identify approximately a hundred high-confidence splicing events altered by ADAR1 and/or ADAR2, and ADAR1 or ADAR2 protein can regulate cassette exons in both directions. We unravel a binding tendency of ADARs to dsRNAs that involves GA-rich sequences for editing and splicing regulation. ADAR1 edits an intronic splicing silencer, leading to recruitment of SRSF7 and repression of exon inclusion. We also present a mechanism through which ADAR2 binds to dsRNA formed between GA-rich sequences and polypyrimidine (Py)-tract and precludes access of U2AF65 to 3' splice site. Furthermore, we find these ADARs-regulated splicing changes per se influence tumorigenesis, not merely byproducts of ADARs editing and binding.


Assuntos
Adenosina Desaminase/metabolismo , Neoplasias/genética , Precursores de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/genética , Processamento Alternativo , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Éxons , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Camundongos Endogâmicos NOD , Degradação do RNAm Mediada por Códon sem Sentido , Edição de RNA , Sítios de Splice de RNA , Splicing de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Fator de Processamento U2AF/genética
14.
Gene ; 625: 21-30, 2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-28476687

RESUMO

Alternative polyadenylation is a prevalent mechanism regulating mammalian gene expression. While tandem 3'-Untranslated-Region (3'UTR) polyadenylation changes expression levels, Intronic PolyAdenylation generates shorter transcripts encoding truncated proteins. Intronic PolyAdenylation regulates 20% of genes and is especially common in receptor tyrosine-kinase transcripts, generating soluble repressors. Here we report that human CD46, encoding a TransMembrane repressor of complement and T-cell co-stimulator, expresses multiple isoforms by alternative polyadenylation. We provide evidence for polyadenylation at several introns by RT-PCR of 5' intronic fragments, and by increase in such isoforms via functional U1 knockdown. We mapped various Intronic PolyAdenylation Sites by 3' Rapid Amplification of cDNA Ends (3'RACE), which could generate soluble or membrane-bound but tail-less CD46. Intronic PolyAdenylation could add to the source of soluble CD46 isoforms in fluids and tissues, which increase in cancers and autoimmune syndromes. Furthermore, 3'RACE identified three PolyAdenylation Sites within the last intron and exon, whose transcripts with shortened 3'UTRs could support higher CD46 expression. Finally, 3'RACE revealed that the CD46 Pseudogene only expresses short transcripts by early polyadenylation in intron 2. Overall, we report a wide variety of CD46 mRNA isoforms which could generate new protein isoforms, adding to the diverse physiological and pathological roles of CD46.


Assuntos
Proteína Cofatora de Membrana/genética , Poliadenilação , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Células HEK293 , Humanos , Íntrons , Células Jurkat , Proteína Cofatora de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pseudogenes , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA