Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569566

RESUMO

Carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) are established prognostic biomarkers for patients with gastric cancer. However, their potential as predictive markers for neoadjuvant chemotherapy (NACT) efficacy has not been fully elucidated. METHODS: We conducted a retrospective analysis to determine values of CEA and CA19-9 prior to NACT (pre-NACT) and after NACT (post-NACT) in 399 patients with locally advanced gastric cancer (LAGC) who received intended NACT and surgery. RESULTS: Among the 399 patients who underwent NACT plus surgery, 132 patients (33.1%) had elevated pre-NACT CEA/CA19-9 values. Furthermore, either pre-NACT or post-NACT CEA /CA19-9 levels were significantly associated with prognosis (p = 0.0023) compared to patients with non-elevated levels. Moreover, among the patients, a significant proportion (73/132, 55.3%) achieved normalized CEA/CA19-9 following NACT, which is a strong marker of a favorable treatment response and survival benefits. In addition, the patients with normalized CEA/CA19-9 also had a prolonged survival compared to those who underwent surgery first (p = 0.0140), which may be attributed to the clearance of micro-metastatic foci. Additionally, the magnitude of CEA/CA19-9 changes did not exhibit a statistically significant prognostic value. CONCLUSIONS: Normalization of CEA/CA19-9 is a strong biomarker for the effectiveness of treatment, and can thus be exploited to prolong the long-term survival of patients with LAGC.


Assuntos
Antígeno Carcinoembrionário , Neoplasias Gástricas , Humanos , Antígeno CA-19-9 , Neoplasias Gástricas/patologia , Terapia Neoadjuvante , Estudos Retrospectivos , Biomarcadores Tumorais , Carboidratos
2.
Chin J Cancer Res ; 35(3): 316-330, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37440827

RESUMO

Objective: PTPRD and PTPRT are phosphatases of the JAK-STAT pathway related to immunotherapy. However, the role and mechanism of PTPRD and PTPRT mutations in multiple cancers remains unclear. Methods: Clinical data and PTPRD/PTPRT mutation information from 12 cohorts were collected and classified as a discovery cohort and three validation cohorts. The association between PTPRD/PTPRT mutations and immunotherapeutic efficacy was analyzed. Then, the association between PTPRD/PTPRT mutation and immune profiles was analyzed using The Cancer Genome Atlas (TCGA) cohort. Results: A total of 2,392 patients across 20 cancer types were included in this study. Our results showed that patients harboring PTPRD/PTPRT mutation, especially co-mutations, had a significantly elevated response rate to immunotherapy in multiple cancers. Patients with PTPRD/PTPRT mutation had a higher objective response rate (ORR) (P=0.002), longer overall survival (OS) (P=0.005) and progression-free survival (PFS) (P=0.038). Importantly, the above findings were further verified in validation cohorts. In addition, we found that the PTPRD/PTPRT co-mutations (co-mut) subgroup exhibited an immune-activated phenotype, the wild-type subgroup tended to have an immune-desert phenotype, and the uni-mutation (uni-mut) subgroup might have an immune-mixed phenotype. Our further analyses suggested that combining programmed cell death ligand 1 (PD-L1) expression and PTPRD/PTPRT mutation can be used to screen patients who may benefit from immunotherapy. Conclusions: PTPRD/PTPRT mutation could serve as a potential predictive biomarker for cancer immunotherapy.

3.
Mol Cancer ; 21(1): 216, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510184

RESUMO

At present, there is no validated marker to identify the subpopulation of patients with advanced gastric cancer (AGC) who might benefit from neoadjuvant chemotherapy (NACT). In view of this clinical challenge, the identification of non-invasive biomarkers for efficacy prediction of NACT in patients with AGC is imperative. Herein, we aimed to develop a non-invasive, liquid-biopsy-based assay by using an exosome-derived RNAs model based on multi-omics characteristics of RNAs. We firstly used a multi-omics strategy to characterize the mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) profiles of circulating exosome enriched fractions in responders to NACT paired with non-responders, using RNA sequencing. Finally, numerous miRNAs, mRNAs and lncRNAs were identified to be associated with the response to NACT in patients with AGC, and it was validated in an independent cohort with promising AUC values. Furthermore, we established a 6-exosome-RNA panel that could robustly identified responders from non-responders treated with fluorouracil-based neoadjuvant chemotherapy.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Terapia Neoadjuvante , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , RNA Longo não Codificante/genética , MicroRNAs/genética , RNA Mensageiro/genética , Biópsia Líquida
4.
Mol Cancer ; 20(1): 99, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330299

RESUMO

Exosomes are a subpopulation of the tumour microenvironment (TME) that transmit various biological molecules to promote intercellular communication. Exosomes are derived from nearly all types of cells and exist in all body fluids. Noncoding RNAs (ncRNAs) are among the most abundant contents in exosomes, and some ncRNAs with biological functions are specifically packaged into exosomes. Recent studies have revealed that exosome-derived ncRNAs play crucial roles in the tumorigenesis, progression and drug resistance of gastric cancer (GC). In addition, regulating the expression levels of exosomal ncRNAs can promote or suppress GC progression. Moreover, the membrane structures of exosomes protect ncRNAs from degradation by enzymes and other chemical substances, significantly increasing the stability of exosomal ncRNAs. Specific hallmarks within exosomes that can be used for exosome identification, and specific contents can be used to determine their origin. Therefore, exosomal ncRNAs are suitable for use as diagnostic and prognostic biomarkers or therapeutic targets. Regulating the biogenesis of exosomes and the expression levels of exosomal ncRNAs may represent a new way to block or eradicate GC. In this review, we summarized the origins and characteristics of exosomes and analysed the association between exosomal ncRNAs and GC development.


Assuntos
Biomarcadores Tumorais , Exossomos/metabolismo , RNA não Traduzido/genética , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/metabolismo , Animais , Progressão da Doença , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , RNA não Traduzido/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microambiente Tumoral
5.
Cell Biochem Funct ; 38(7): 921-931, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32141108

RESUMO

LncRNA RP11-363E7.4 has been shown to be downregulated in gastric cancer (GC), while the effect of lncRNA RP11-363E7.4 on GC and its potential molecular mechanisms is unclear. The purpose of this study was to explore the functional role and underlying molecular mechanisms of lncRNA RP11-363E7.4 involved in GC progress.To address the question, quantitative real-time PCR assay was performed to confirm lncRNA RP11-363E7.4 expression levels in GC tissues and cell lines. Cell proliferation, apoptosis, migration and invasion were estimated using Cell Counting Kit-8, colony formation, scratch wound healing and Transwell assays. Potential molecular mechanisms were evaluated using western blot assay. The results showed that lncRNA RP11-363E7.4 was significantly downregulated in GC cell lines and 82 paired tissues. The correlation between expression and clinicopathological features indicated that low expression of lncRNA RP11-363E7.4 was associated with T stage (P = .010). Functional experiments showed that overexpression of lncRNA RP11-363E7.4 prevented proliferation, migration, and invasion and induced apoptosis of GC cells. Western blot assay revealed that lncRNA RP11-363E7.4 functioned via the p53, Bax/Bcl-2, ß-catenin pathway. In summary, this study revealed that lncRNA RP11-363E7.4 functioned as a tumour suppressor by inhibiting proliferation, migration, and invasion and inducing apoptosis of GC cells. Significance of the study:LncRNA RP11-363E7.4 has been shown to be downregulated in GC, while the effect of lncRNA RP11-363E7.4 on GC and its potential molecular mechanism is unclear. We revealed that lncRNA RP11-363E7.4 functioned as a tumour suppressor by inhibiting proliferation, migration, and invasion and inducing apoptosis of GC cells. LncRNA RP11-363E7.4 might become an attractive diagnostic and prognostic biomarker of GC and a promising target for GC treatment.


Assuntos
Proliferação de Células , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Apoptose , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , beta Catenina/metabolismo
7.
Clin Transl Med ; 14(8): e1754, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39095325

RESUMO

BACKGROUND: Although it is traditionally believed that ATP binding cassette subfamily C member 2 (ABCC2) is a multidrug resistance-associated protein correlated with a worse prognosis, our previous and several other studies demonstrated the contrary to be true in gastric cancer (GC). We aim to explore the underlying mechanism of this discovery. METHODS: Our study utilized whole-exome sequencing (WES), RNA sequencing, and droplet digital PCR (ddPCR) analysis of 80 gastric cancer samples, along with comprehensive immunohistochemical (IHC) analysis of 1044 human GC tissue samples.By utilizing CRISPRCas9 to genetically modify cell lines with the ABCC2-24C > T (rs717620) point mutation and conducting dual-luciferase reporter assays, we identified that transcription factors SOX9 and ETS1 serve as negative regulators of ABCC2 expression. Seahorse assay and mass spectrometry were used to discover altered metabolic patterns. Gain and loss-of-function experiments in GC cell lines and preclinical models were carried out to validate ABCC2 biological function. RESULTS: ABCC2 high expression correlated with better prognosis, and rs717620 can influence ABCC2 expression by disrupting the binding of ETS1 and SOX9. Gain and loss-of-function experiments in GC cell lines demonstrated amino acid deprivation reduces proliferation, migration, and drug resistance in ABCC2-high GC cells. ABCC2 leads to reduced intracellular amino acid pools and disruption of cellular energy metabolism. This phenomenon depended on ABCC2-mediated GSH extrusion, resulting in alterations in redox status, thereby increasing the cell's susceptibility to ferroptosis. Furthermore, patient-derived organoids and patient-derived tumor-like cell clusters were used to observe impact of ABCC2 on therapeutic effect. In the xenograft model with high ABCC2 expression, we observed that constricting amino acid intake in conjunction with GPX4 inactivation resulted in notable tumor regression. CONCLUSIONS: Our findings demonstrate a significant role of ABCC2 in amino acid metabolism and ferroptosis by mediating GSH efflux in GC. This discovery underlines the potential of combining multiple ferroptosis targets as a promising therapeutic strategy for GC with high ABCC2 expression. HIGHLIGHTS: ABCC2 plays a crucial role in inducing metabolic vulnerability and ferroptosis in gastric cancer through enhanced glutathione efflux. The ABCC2 24C > T polymorphism is a key factor influencing its expression. These results highlight the potential of ABCC2 as a predictive biomarker and therapeutic target in gastric cancer.


Assuntos
Ferroptose , Glutationa , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ferroptose/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Glutationa/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Masculino , Feminino
8.
Biomolecules ; 13(3)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36979463

RESUMO

BACKGROUND: Immunogenic cell death (ICD) is considered a promising type of regulated cell death and exerts effects by activating the adaptive immune response, reshaping the tumor environment (TME) and improving therapeutic efficacy. However, the potential roles and prognostic value of ICD-associated genes in gastric cancer (GC) remain unclear. METHODS: The RNA expression data and clinical information of 1090 GC patients from six cohorts were collected. Consensus clustering was used to identify three distinct molecular subtypes. Then, a robust prognostic ICD_score for predicting prognosis was built via WGCNA and LASSO Cox regression according to the TCGA cohort, and the predictive capability of the ICD_score in GC patients was validated in the other cohorts. ICD-related immune features were analyzed using a CIBERSORT method and verified by immunofluorescence. RESULTS: We found that ICD-related gene variations were correlated with clinical outcomes, tumor immune microenvironment (TIME) characteristics and treatment response. We then constructed an ICD signature that classifies cases as low- and high-ICD_score groups. The high-ICD_score group indicates unfavorable OS, a more advanced TNM stage, and presents an immune-suppressed phenotype, which has more infiltrations of pro-tumor immune cells, such as macrophages, which was verified by immunofluorescence. In addition, a nomogram containing the ICD_score showed a high predictive accuracy with AUCs of 0.715, 0.731 and 0.8 on Years 1, 3, and 5. CONCLUSION: We performed the first and synthesis ICD analysis in GC and built a clinical application tool based on the ICD signature, which paved a new path for assessing prognosis and guiding individual treatment.


Assuntos
Morte Celular Regulada , Neoplasias Gástricas , Humanos , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Morte Celular Imunogênica , Área Sob a Curva , Microambiente Tumoral/genética
9.
Front Oncol ; 12: 808817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600404

RESUMO

Background: The current tumor-node-metastasis (TNM) staging system is insufficient for predicting the efficacy of chemotherapy in patients with gastric cancer (GC). This study aimed to analyze the association between the focal adhesion pathway and therapeutic efficacy of chemotherapy in patients with GC. Methods: RNA sequencing was performed on 33 clinical samples from patients who responded or did not respond to treatment prior to neoadjuvant chemotherapy. The validation sets containing 696 GC patients with RNA data from three cohorts (PKUCH, TCGA, and GSE14210) were analyzed. A series of machine learning and bioinformatics approaches was combined to build a focal adhesion-related signature model to predict the treatment efficacy and prognosis of patients with GC. Results: Among the various signaling pathways associated with cancer, focal adhesion was identified as a risk factor related to the treatment efficacy of chemotherapy and prognosis in patients with GC. The focal adhesion-related gene model (FAscore) discriminated patients with a high FAscore who are insensitive to neoadjuvant chemotherapy in our training cohort, and the predicted value was further verified in the GSE14210 cohort. Survival analysis also demonstrated that patients with high FAscores had a relatively shorter survival compared to those with low FAscores. In addition, we found that the levels of tumor mutation burden (TMB) and microsatellite instability (MSI) increased with an increase in FAscore, and the tumor microenvironment (TME) also shifted to a pro-tumor immune microenvironment. Conclusion: The FAscore model can be used to predict the treatment efficacy of chemotherapy and select appropriate treatment strategies for patients with GC.

10.
Int J Biol Macromol ; 206: 409-421, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245572

RESUMO

The radioactive pollution caused by the discharge of radioactive wastewater poses a serious threat to public health and ecosystem stability owing to its long-term detriments. Herein, the ion-imprinted honeycomb-like chitosan/kaolin clay (ICK) composite foams were successfully fabricated and applied to the selective biosorption of U(VI) from aqueous solution. It was found that the ICK-2 was the best among various ICK foams owing to its well-developed honeycomb-like structure and the presence of abundant functional groups. As compared to the non-imprinted sorbent (NICK-2), the ion-imprinted sorbent (ICK-2) presents higher sorption and better selectivity since it can smartly recognize the target ions. The sorption isotherms was well-fitted with Langmuir model, and the maximum sorption capacity of ICK-2 was evaluated as 286.85 mg/g for U(VI) at 298 K and pH 5.0. The kinetic data could be described by pseudo-second order model. The FTIR and XPS results suggest that both amine and hydroxyl groups are responsible for U(VI) coordination. The ICK-2 presents high sorption capacity, good selectivity and fast kinetic rate, and thus it has potential application for U(VI) separation from radioactive wastewater.


Assuntos
Quitosana , Urânio , Adsorção , Quitosana/química , Argila , Ecossistema , Concentração de Íons de Hidrogênio , Íons , Caulim , Cinética , Urânio/química , Águas Residuárias , Água
11.
Biomolecules ; 12(10)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36291668

RESUMO

BACKGROUND: The human copper Cu proteome, also termed Cu-binding proteins (CBP), is responsible for transporting "free" Cu to the cell that is related to cuproptosis. However, their role in gastric cancer (GC) has not been reported. METHODS: RNA expression data of 946 GC patients were collected. A series of machine learning and bioinformatic approaches were combined to build a CBP signature to predict survival and immune microenvironment and guide the priority treatment. Immunohistochemistry and multicolor immunofluorescence (mIF) in 1076 resection slides were used to verify immune features. RESULTS: A CBP signature was constructed using the machine learning method from TCGA that classifies cases as CBP_low and CBP_high groups. Multivariable Cox analysis confirmed that the CBP signature was an independent prognostic factor in the training and validation cohorts. Additionally, GC patients with low CBPscores showed an increase in anti-tumor immune microenvironment, which was further verified by mIF in pathological resections following immunotherapy. Importantly, patients with low CBPscores had higher levels of TMB/MSI and responded well to immunotherapy. CONCLUSIONS: We conducted the first and comprehensive CBP analysis of GC patients and established a clinically feasible CBP signature for predicting survival and response to treatment, which will be helpful for guiding personalized medicine.


Assuntos
Apoptose , Neoplasias Gástricas , Humanos , Cobre , Imuno-Histoquímica , Proteoma/genética , RNA , Neoplasias Gástricas/metabolismo , Microambiente Tumoral
12.
Oncoimmunology ; 11(1): 2135819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268179

RESUMO

First-line PD-1 blockade plus chemotherapy significantly improves the survival benefits in late-stage gastric cancer (GC) patients. However, the pathological response rate and effects on the immune microenvironment of neoadjuvant PD-1 blockade plus chemotherapy in patients with cTNM-stage III GC remain to be elucidated. Patients with cTNM-stage III GC who underwent neoadjuvant PD-1 blockade plus chemotherapy and surgery were enrolled. Four in vivo models bearing GC were jointly established to investigate the specific roles of chemotherapy and PD-1 blockade for GC treatment. The tumor immune microenvironment was analyzed by hematoxylin and eosin (H&E) and IHC staining, multicolor flow cytometry and immunofluorescence. A total of 75 patients with cTNM-stage III (cT2-4N1-3M0) gastric cancer who received neoadjuvant PD-1 blockade plus chemotherapy (SOX/XELOX) were included in this study. After treatment, 21 (28.0%) and 57 (76.0%) patients achieved pathological complete response (pCR) and post-therapy pathological downstaging. Subgroup analyses revealed that patients with CPS >1 (32.6% vs 8.3%) and dMMR (35.7% vs 25.4%) subtype had better efficacy. Additionally, the resected specimens showed more anti-tumor immune infiltration indicating a response to neoadjuvant PD-1 blockade plus chemotherapy. Multicolor immunofluorescence and in vivo experiments on mouse models revealed that elevated M1/M2 ratio of macrophages, CD8 + T cells and plasma cells indicated effective response to treatment. Furthermore, neoadjuvant PD-1 blockade plus chemotherapy neither delayed surgery nor increased postoperative complication rate. The analyses indicate neoadjuvant PD-1 blockade plus chemotherapy is a promising therapeutic strategy in patients with cTNM-stage III GC with an encouraging pCR rate.


Assuntos
Terapia Neoadjuvante , Receptor de Morte Celular Programada 1 , Neoplasias Gástricas , Animais , Camundongos , Estadiamento de Neoplasias , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Microambiente Tumoral
13.
Transl Cancer Res ; 10(1): 382-392, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35116268

RESUMO

BACKGROUND: Interferon-induced transmembrane proteins (IFITMs) are a family of proteins which functions mainly include controlling cell proliferation, promoting homotypic cell adhesion, and preventing viral infection. This research study attempts to elucidate the association between IFITM10 expression level and gastric cancer (GC). METHODS: Transcriptome sequencing and clinical information on GC and normal tissues was obtained from the Cancer Genome Atlas (TCGA) database. R and related statistical packages were used to analyze the relationship between IFITM10 and survival in GC patients based on available clinical information. Receiver operating characteristic curves (ROC) were constructed using the SPSS software package. IFITM10 expression levels in patients tissue samples were examined by qPCR and association between IFITM10 expression and clinic characteristics was analyzed using SPSS. The signaling pathway associated with IFITM10 was analyzed using gene set enrichment analysis (GSEA). RESULTS: In the TCGA database, IFITM10 was highly expressed in GC tissues (P<0.001). Area under the curve (AUC) value for IFITM10 in all samples was 0.813, while AUC value in the paired GC and adjacent tissues was 0.955. In the sample of surgical patients, IFITM10 was highly expressed in GC tissues (P<0.001). IFITM10 expression was higher in T1 and T2 tissues (P=0.042), male patients (P=0.031), and tissues without neuro infiltration (P=0.008). CONCLUSIONS: IFITM10 is highly expressed in GC and can serve as an early diagnostic indicator. High expression of IFITM10 was related to a low T stage in GC.

14.
Int J Biol Macromol ; 164: 4155-4164, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888989

RESUMO

The radiological toxicity of uranium in nuclear industrial wastewater poses a long-term threat to environment, thus the effective separation of radionuclide from wastewater is very important for environmental safety. Herein, the macroporous ion-imprinted chitosan foams (ICFs) were synthesized by the combination of the facile freezing-drying and ion-imprinting techniques. Compared with non-imprinted chitosan foam, the ICFs showed much higher adsorption capacities (qm = 248.9-253.6 mg/g) and better adsorption selectivity for U(VI) owing to their smart recognition of the target ions for matching the cavities formed during U(VI)-imprinting process. The adsorption kinetics could be fitted by pseudo-second-order model; whereas the adsorption isotherms could be described by Langmuir model, indicating chemisorption or complexation mechanism. The FT-IR and XPS analysis further confirms that the coordination between U(VI) and the active sites (amine and hydroxyl groups) is the main adsorption mechanism. The thermodynamic parameters suggest that the adsorption of U(VI) is endothermic and spontaneous. This work provides new insights for the design of novel macroporous biosorbents with both high adsorption capacity and excellent adsorption selectivity for U(VI) biosorption from wastewater.


Assuntos
Quitosana/química , Íons/química , Impressão Molecular , Adsorção , Fenômenos Químicos , Reagentes de Ligações Cruzadas/química , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Mecânicos , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Urânio/química
15.
Int J Biol Macromol ; 160: 1000-1008, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464208

RESUMO

The porous chitosan/carboxylated carbon nanotubes composite aerogels (CS-CCN) with different CCN contents were prepared for the efficient removal of U(VI) from aqueous solution. The successful formation of CS-CCN aerogels with highly porous structure was confirmed by different characterizations (such as SEM, TEM, XRD, etc.). The sorption capacity of the aerogels depends on CCN content, which has significant impact on the porous structure and the sorption ability of the aerogels. The CS-CCN aerogels were found to be very effective for U(VI) sorption: the maximum mono-layer sorption capacity for CS-CCN2 aerogel reached 307.5 mg/g at pH 5.0 and 298 K. The chemisorption or surface complexation through sharing of O/N lone pair electrons on the active sites (carboxylic and amine groups) was responsible for U(VI) sorption, which is confirmed by the IR and XPS analysis. Meanwhile, the good-fitting of both sorption kinetics by pseudo-second-order model and sorption isotherms by Langmuir model also indicates chemisorption mechanism. The thermodynamic data suggest that U(VI) sorption on CS-CCN aerogel is endothermic and spontaneous. The unique characteristics such as high sorption capacity, fast kinetic, and easy recovery from solution make CS-CCN aerogels be very efficient sorbents for the treatment of radioactive wastewater.


Assuntos
Quitosana/química , Géis/química , Nanotubos de Carbono/química , Urânio/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Nanotubos de Carbono/ultraestrutura , Porosidade , Soluções , Análise Espectral
16.
Int J Oncol ; 54(5): 1511-1524, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896792

RESUMO

Gastric cancer (GC) is one of the most prevalent and malignant types of cancer worldwide. In China, it is the second most common type of cancer and the malignancy with the highest incidence and mortality rate. Chemotherapy for GC is not always effective due to the development of drug resistance. Drug resistance, which is frequently observed in GC, undermines the success rate of chemotherapy and the survival of patients with GC. The dysregulation of non­coding RNAs (ncRNAs), primarily microRNAs (miRNAs or miRs) and long non­coding RNAs (lncRNAs), is involved in the development of GC drug resistance via numerous mechanisms. These mechanisms contribute to the involvement of a large and complex network of ncRNAs in drug resistance. In this review, we focus on and summarize the latest research on the specific mechanisms of action of miRNAs and lncRNAs that modulate drug resistance in GC. In addition, we discuss future prospects and clinical applications of ncRNAs as potential targeted therapies against the chemoresistance of GC.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , China , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Gástricas/tratamento farmacológico
17.
Yonsei Med J ; 60(4): 319-325, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30900417

RESUMO

Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide, and its high rates of relapse and metastasis are associated with a poor prognosis. Despite extensive research, the underlying regulatory mechanisms of CRC remain unclear. Long noncoding RNAs (lncRNAs) are a major type of noncoding RNAs that have received increasing attention in the past few years, and studies have shown that they play a role in many biological processes in CRC. Here, we summarize recent studies on lncRNAs associated with CRC and the signaling pathways and mechanisms underlying this association. We show that dysregulated lncRNAs may be new prognostic and diagnostic biomarkers or therapeutic targets for clinical application. This review contributes not only to our understanding of CRC, but also suggests novel signaling pathways associated with lncRNAs that can be targeted to block or eradicate CRC.


Assuntos
Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Biomarcadores Tumorais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Progressão da Doença , Humanos , Prognóstico , Transdução de Sinais
18.
Onco Targets Ther ; 12: 1195-1204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863087

RESUMO

The Warburg effect in tumor cells involves the uptake of high levels of glucose, enhanced glycolysis, and the metabolism of pyruvate to lactic acid rather than oxidative phos-phorylation to generate energy under aerobic conditions. This effect is closely related to the occurrence, invasion, metastasis, drug resistance, and poor prognosis of gastric cancer (GC). Current research has further demonstrated that the Warburg effect in GC cells is not only mediated by the glycolysis pathway, but also includes roles for mitochondria, noncoding RNAs, and other proteins that do not directly regulate metabolism. As a result, changes in the glycolysis pathway not only lead to abnormal glucose metabolism, but they also affect mitochondrial functions, cellular processes such as apoptosis and cell cycle regulation, and the metabolism of lipids and amino acids. In this review, we discuss metabolic reprogramming in GC based on glycolysis, a possible link between glucose metabolism, lipid metabolism, and amino acid metabolism, and we clarify the role of mitochondria. We also examine recent studies of metabolic inhibitors in GC.

19.
Cancer Manag Res ; 11: 10509-10521, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31853202

RESUMO

Gastric cancer (GC) is the third most common cause of cancer-related death worldwide. Advanced diagnosis and high rates of relapse and metastasis are associated with the poor prognosis of this disease. GC has a complex etiopathogenesis of which the underlying mechanisms remain to be explored. Studies on circular RNAs (circRNAs), noncoding RNAs that may be potential targets in GC, have made substantial progress over the past few years. CircRNAs exert important effects on the onset and progression of GC. Hence, this article aims to summarize the findings of recent studies of circRNAs related to GC and to describe the underlying mechanisms and potential applications. The findings indicate that circRNAs participate in GC regulation, proliferation, invasion, and metastasis through regulating microRNAs, proteins, genes, and signaling pathways. In addition, dysregulated circRNAs may be used as novel diagnostic and prognostic biomarkers or therapeutic targets. This review is expected to facilitate a better understanding of GC, and it suggests novel circRNA-based methods to inhibit or prevent GC.

20.
Front Oncol ; 9: 787, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497532

RESUMO

Cancer is the second leading cause of death worldwide, and no obvious decline in incidence and mortality has occurred in recent years. It is imperative to further investigate the mechanisms underlying tumor progression. Long non-coding RNAs have received considerable attention in recent years because of their major regulatory roles in gene expression. Among them, PVT1 is well-studied, and substantial evidence indicates that PVT1 plays critical roles in the onset and development of cancers. Normally, PVT1 acts as an oncogenic factor by promoting cancer cell proliferation, invasion, metastasis, and drug resistance. Herein, we summarize current knowledge regarding the regulatory effects of PVT1 in cancer progression, as well as the related underlying mechanisms, such as interaction with Myc, modulation of miRNAs, and regulation of gene transcription and protein expression. In extracellular fluid, PVT1 mainly promotes cancer initiation, and it normally enhances cellular cancer characteristics in the cytoplasm and cell nucleus. Regarding clinical applications, its role in drug resistance and its potential use as a diagnostic and prognostic marker have received increasing attention. We hope that this review will contribute to a better understanding of the regulatory role of PVT1 in cancer progression, paving the way for the development of PVT1-based therapeutic approaches in cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA