Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398507

RESUMO

The conversion of lignite into aromatic compounds by highly active catalysts is a key strategy for lignite valorization. In this study, Ni/NiO@NC nanocomposites with a high specific surface area and a vesicular structure were successfully prepared via a facile sol-gel method. The Ni/NiO@NC catalysts exhibited excellent catalytic activity for the catalytic hydroconversion (CHC) of benzyloxybenzene (as lignite-related modeling compounds) under mild conditions (120 °C, 1.5 MPa H2, 60 min). The possible mechanism of the catalytic reaction was investigated by analyzing the type and content of CHC reaction products at different temperatures, pressures, and times. More importantly, the magnetic catalyst could be conveniently separated by a magnet after the reaction, and it maintained high catalytic efficiency after six reuses. This study provides an efficient and recyclable catalyst for the cleavage of >CH-O bonds in lignite, thereby offering another way for improved utilization of lignite.

2.
J Colloid Interface Sci ; 667: 385-392, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640657

RESUMO

Introducing the appropriate vacancies to augment the active sites and improve the electrochemical kinetics while maintaining high cyclability is a major challenge for its widespread application in electrochemical energy storage. Here, core-shell structured Bi2S3@C with sulfur vacancies was prepared by hydrothermal method and one-step carbonization/sulfuration process, which significantly improves the intrinsic electrical conductivity and ion transport efficiency of Bi2S3. Additionally, the uniform protective carbon layer around surface of composite maintains structural stability and effectively alleviates volume expansion during alloying/dealloying. As a result, the BSC-500 anode exhibits a brilliant reversible capacity of 636 mAh/g at 0.2 A/g and a long-term stable capacity of 524 mAh/g for 500 cycles at a high current density of 3 A/g in lithium-ion batteries. In addition, the assembled Bi2S3@C//LiCoO2 full cell delivered a capacity of 184 mAh/g at 1 A/g and excellent cyclability (125 mAh/g after 1000 cycles). The proposed strategy of combining sulfur vacancies with a core-shell structure to improve the electrochemical kinetics of Bi2S3 in lithium-ion batteries off the prospect for practical applications of transition metal sulfide anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA