Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(9): 3939-3946, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37096805

RESUMO

Noninvasive and label-free analysis of cell membranes at the nanoscale is essential to comprehend vital cellular processes. However, conventional analytical tools generally fail to meet this challenge due to the lack of required sensitivity and/or spatial resolution. Herein, we demonstrate that tip-enhanced Raman spectroscopy (TERS) is a powerful nanoanalytical tool to analyze dipalmitoylphosphatidylcholine (DPPC) bilayers and human cell membranes with submolecular resolution in the vertical direction. Unlike the far-field Raman measurements, TERS spectra of the DPPC bilayers reproducibly exhibited a uniquely shaped C-H band. These unique spectral features were also reproducibly observed in the TERS spectrum of human pancreatic cancer cells. Spectral deconvolution and DFT simulations confirmed that the TERS signal primarily originated from vibrations of the CH3 groups in the choline headgroup of the lipids. The reproducible TERS results obtained in this study unequivocally demonstrate the ultrahigh sensitivity of TERS for nanoanalysis of lipid membranes under ambient conditions.


Assuntos
Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Membrana Celular , Membranas
2.
Angew Chem Int Ed Engl ; 63(19): e202318682, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407535

RESUMO

Gaining mechanistic understanding of oxygen activation on metal surfaces is a topical area of research in surface science. However, direct investigation of on-surface oxidation processes at the nanoscale and the empirical validation of oxygen activation pathways remain challenging for the conventional analytical tools. In this study, we applied tip-enhanced Raman spectroscopy (TERS) to gain mechanistic insights into oxygen activation on bulk Au(111) surface. Specifically, oxidation of 4-aminothiophenol (4-ATP) to 4-nitrothiophenol (4-NTP) on Au(111) surface was investigated using hyperspectral TERS imaging. Nanoscale TERS images revealed a markedly higher oxidation efficiency in disordered 4-ATP adlayers compared to the ordered adlayers signifying that the oxidation of 4-ATP molecules proceeds via interaction with the on-surface oxidative species. These results were further validated via direct oxidation of the 4-ATP adlayers with H2O2 solution. Finally, TERS measurements of oxidized 4-ATP adlayers in the presence of H2O18 provided the first empirical evidence for the generation of oxidative species on bulk Au(111) surface via water-mediated activation of molecular oxygen. This study expands our mechanistic understanding of oxidation chemistry on bulk Au surface by elucidating the oxygen activation pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA