Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Cells ; 21(8): 812-32, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27334362

RESUMO

Inner nuclear membrane proteins interact with chromosomes in the nucleus and are important for chromosome activity. Lem2 and Man1 are conserved members of the LEM-domain nuclear membrane protein family. Mutations of LEM-domain proteins are associated with laminopathy, but their cellular functions remain unclear. Here, we report that Lem2 maintains genome stability in the fission yeast Schizosaccharomyces pombe. S. pombe cells disrupted for the lem2(+) gene (lem2∆) showed slow growth and increased rate of the minichromosome loss. These phenotypes were prominent in the rich culture medium, but not in the minimum medium. Centromeric heterochromatin formation was augmented upon transfer to the rich medium in wild-type cells. This augmentation of heterochromatin formation was impaired in lem2∆ cells. Notably, lem2∆ cells occasionally exhibited spontaneous duplication of genome sequences flanked by the long-terminal repeats of retrotransposons. The resulting duplication of the lnp1(+) gene, which encodes an endoplasmic reticulum membrane protein, suppressed lem2∆ phenotypes, whereas the lem2∆ lnp1∆ double mutant showed a severe growth defect. A combination of mutations in Lem2 and Bqt4, which encodes a nuclear membrane protein that anchors telomeres to the nuclear membrane, caused synthetic lethality. These genetic interactions imply that Lem2 cooperates with the nuclear membrane protein network to regulate genome stability.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Heterocromatina/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Retículo Endoplasmático/genética , Lamina Tipo A/genética , Mutação , Membrana Nuclear/genética , Proteínas Nucleares/genética , Telômero/genética
2.
PLoS Genet ; 8(6): e1002776, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737087

RESUMO

To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability.


Assuntos
Sobrevivência Celular/genética , Recombinação Homóloga , Proteínas de Ligação a RNA , Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Aneuploidia , Exorribonucleases/genética , Exorribonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Recombinação Homóloga/genética , Meiose , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Deleção de Sequência , Esporos/genética , Esporos/crescimento & desenvolvimento
3.
Genetics ; 179(2): 785-92, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18505884

RESUMO

The core proteins of the spindle assembly checkpoint (SAC), Mads, Bubs, and Mps1, first identified in the budding yeast, are thought to be functionally and structurally conserved through evolution. We found that fission yeast Bub3 is dispensable for SAC, as bub3 null mutants blocked mitotic progression when spindle formation was disrupted. Consistently, the bub3 mutation only weakly affected the stability of minichromosome Ch16 compared with other SAC mutants. Fission yeast Rae1 has sequence homology with Bub3. The bub3 rae1 double mutant and rae1 single mutant did not have defective SAC, suggesting that these genes do not have overlapping roles for SAC. Observations of living cells revealed that the duration of the mitotic prometaphase/metaphase was longer in the bub3 mutant and was Mad2 dependent. Further, the bub3 mutant was defective in sister centromere association during metaphase. Together, these findings suggest that fission yeast Bub3 is required for normal spindle dynamics, but not for SAC.


Assuntos
Proteínas de Ciclo Celular/genética , Genes Fúngicos , Mitose/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/fisiologia , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/genética , Mutação , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Fuso Acromático/genética , Coesinas
4.
Genetics ; 175(4): 1571-84, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17277378

RESUMO

A previously isolated fission yeast gamma-tubulin mutant containing apparently stabilized microtubules proliferated at an approximately identical rate as wild type, yet the mutant mitosis spindle dynamics were aberrant, particularly the kinetochore microtubule dynamics. Progression through mitosis in the mutant, however, resulted in mostly accurate chromosome segregation. In the absence of the spindle assembly checkpoint gene, mad2+, the spindle dynamics in the gamma-tubulin mutant were greatly compromised, leading to a high incidence of chromosome missegregation. Unlike in wild-type cells, green fluorescent protein (GFP)-tagged Mad2 protein often accumulated near one of the poles of an elongating spindle in the gamma-tubulin mutant. We isolated novel mad2 mutants that were defective in arresting mitotic progression upon gross perturbation of the spindle formation but remained functional for the viability of the gamma-tubulin mutant. Further, the mad2 mutations did not appreciably destabilize minichromosomes in unperturbed mitoses. When overexpressed ectopically, these mutant Mad2 proteins sequestered wild-type Mad2, preventing its function in mitotic checkpoint arrest, but not in minichromosome stability. These results indicated that the Mad2 functions required for checkpoint arrest and chromosome stability in unperturbed mitosis are genetically discernible. Immunoprecipitation studies demonstrated that GFP-fused mutant Mad2 proteins formed a Mad1-containing complex with altered stability compared to that formed with wild-type Mad2, providing clues to the novel mad2 mutant phenotype.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Alelos , Anáfase/genética , Instabilidade Cromossômica , Segregação de Cromossomos/genética , Cromossomos Fúngicos/genética , Expressão Gênica , Genes Fúngicos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Mad2 , Metáfase/genética , Mitose/genética , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fuso Acromático/metabolismo
5.
Genetics ; 167(3): 1095-107, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15280226

RESUMO

In fission yeast, gamma-tubulin (encoded by the gtb1+ gene), Alp4 (Spc97/GCP2), and Alp6 (Spc98/GCP3) are essential components of the gamma-tubulin complex. We isolated gtb1 mutants as allele-specific suppressors of temperature-sensitive alp4 mutations. Mutation sites in gtb1 mutants and in several alp4 alleles were determined. The majority of substituted amino acids were mapped to a small area on the predicted surface of the gamma-tubulin molecule that might directly interact with the Alp4 protein. The cold sensitivity of gamma-tubulin mutants was almost completely suppressed by an alpha-tubulin mutation and partially suppressed by a low concentration of thiabendazole, a microtubule assembly inhibitor. Other gtb1 mutants had increased resistance to this drug. Gel-filtration and immunoprecipitation analyses suggested that the mutant gamma-tubulin formed an altered gamma-tubulin complex with increased stability compared to wild-type gamma-tubulin. In most gtb1 mutants, sexual development was impaired, and aberrant asci that contained an irregular spore shape and number were produced. In contrast, spore formation was not appreciably damaged in some alp4 and alp6 mutants, even at temperatures where vegetative proliferation was substantially defective. These results suggested that the function of the gamma-tubulin complex or the requirement of each component of the complex is differentially regulated between the vegetative and sexual phases of the life cycle in fission yeast. In addition, genetic data indicated intimate functional connections of gamma-tubulin with several kinesin-like proteins.


Assuntos
Mutação/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Supressão Genética/genética , Tubulina (Proteína)/genética , Cromatografia em Gel , Temperatura Baixa , Imuno-Histoquímica , Imunoprecipitação , Modelos Moleculares , Reprodução/genética , Schizosaccharomyces/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Esporos/genética , Tiabendazol
6.
Science ; 333(6045): 1026-30, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21852501

RESUMO

Aneuploidy decreases cellular fitness, yet it is also associated with cancer, a disease of enhanced proliferative capacity. To investigate one mechanism by which aneuploidy could contribute to tumorigenesis, we examined the effects of aneuploidy on genomic stability. We analyzed 13 budding yeast strains that carry extra copies of single chromosomes and found that all aneuploid strains exhibited one or more forms of genomic instability. Most strains displayed increased chromosome loss and mitotic recombination, as well as defective DNA damage repair. Aneuploid fission yeast strains also exhibited defects in mitotic recombination. Aneuploidy-induced genomic instability could facilitate the development of genetic alterations that drive malignant growth in cancer.


Assuntos
Aneuploidia , Dano ao DNA , Reparo do DNA , Genoma Fúngico , Instabilidade Genômica , Recombinação Genética , Saccharomyces cerevisiae/genética , Segregação de Cromossomos , Cromossomos Fúngicos/genética , Replicação do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Mutagênese , Mutação , Neoplasias/genética , Fenótipo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Yeast ; 23(13): 937-50, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17072887

RESUMO

Aneuploid generation and stability are biologically important. In the present study, we investigated fission yeast aneuploids, focusing on the process through which aneuploidy is resolved into stable euploidy. The viability and growth patterns of aneuploid spores were greatly influenced by culture conditions, including nutrition and temperature. Germ tube formation and DNA synthesis in a major portion of aneuploids were greatly delayed or arrested. Observation of individual spores and their growth profiles revealed that a certain type(s) of aneuploid resolved its aneuploidy into normal euploids through anomalous cell divisions, which in many cases produced dead cells. Another type of aneuploid, disomy of chromosome 3, the only maintainable aneuploid between n and 2n, showed a peculiar cell division arrest phenotype under a certain growth condition. Microcolonies that formed from this type of aneuploid often contained a population of cells that became incompetent for cell division. This cell division arrest was not due to a nutritional limitation. During this peculiar process of colony formation, stable haploids or diploids were frequently produced. All other types of aneuploids are usually inviable, at least under our experimental conditions. To examine the aneuploid issue more systematically, we constructed a system to select for disomy of chromosome 1 or 2 using intragenic complementation of ade6-M210 and -M216 alleles. This genetic selection system revealed that fission yeast aneuploids can be stabilized through structural chromosome changes, including partial duplication and circular mini-chromosomes.


Assuntos
Aneuploidia , Instabilidade Cromossômica/fisiologia , Cromossomos Fúngicos/fisiologia , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/genética , Instabilidade Cromossômica/genética , Cromossomos Fúngicos/genética , DNA Fúngico/química , DNA Fúngico/genética , Eletroforese em Gel de Campo Pulsado , Citometria de Fluxo , Hibridização in Situ Fluorescente , Meiose/genética , Meiose/fisiologia , Microscopia de Fluorescência , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
8.
J Cell Sci ; 115(Pt 22): 4375-85, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12376568

RESUMO

We identified a novel fission yeast gene, ned1(+), with pleiotropic mutations that have a high incidence of chromosome missegregation, aberrantly shaped nuclei, overdeveloped endoplasmic reticulum-like membranes, and increased sensitivity to a microtubule destabilizing agent. Ned1 protein, which was phosphorylated in a growth-related manner, interacted in a yeast two-hybrid system with Dis3 as well as with Pim1/RCC1 (nucleotide exchange factor for Ran). Ned1 also interacted with an essential nucleoporin, a probable homologue of mammalian Nup98/96. The ned1 gene displayed a variety of genetic interactions with factors involved in nuclear transport and chromosome segregation, including the crm1 (exportin), spi1 (small GTPase Ran), pim1, and dis genes. A substitution mutation that affected the two-hybrid interaction with Dis3 increased chromosome instability, suggesting the functional importance of the interaction. Overproduction of Ned1 protein induced formation of an abnormal microtubule bundle within the nucleus, apparently independently of the spindle pole body, but dependent on pim1(+) activity. The ned1(+) gene belongs to an evolutionarily conserved gene family, which includes the mouse Lpin genes, one of whose mutations is responsible for lipodystrophy.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Membrana Nuclear/metabolismo , Proteínas Nucleares/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/isolamento & purificação , Schizosaccharomyces/metabolismo , Transporte Ativo do Núcleo Celular/genética , Sequência de Aminoácidos/genética , Sequência de Bases/genética , Segregação de Cromossomos/genética , Clonagem Molecular , DNA Complementar/análise , DNA Complementar/genética , Evolução Molecular , Exorribonucleases , Complexo Multienzimático de Ribonucleases do Exossomo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Microscopia Eletrônica , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patologia , Dados de Sequência Molecular , Mutação/genética , Membrana Nuclear/genética , Membrana Nuclear/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA