Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(6): 3232-3244, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29471537

RESUMO

Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G' of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.


Assuntos
Proteínas Arqueais/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Pyrococcus horikoshii/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Ligação Proteica , Conformação Proteica , Pyrococcus horikoshii/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Homologia de Sequência de Aminoácidos
2.
Biochemistry ; 55(6): 884-93, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26807477

RESUMO

HutZ is a cytoplasmic heme-binding protein from Vibrio cholerae. Although we have previously identified HutZ as a heme-degrading enzyme [Uchida, T., et al. (2012) Chem. Commun. 48, 6741-6743], the heme transport protein for HutZ remained unknown. To identify the heme transport protein for HutZ, we focused on the heme utilization operon, hutWXZ. To this end, we constructed an expression system for HutX in Escherichia coli and purified it to homogeneity. An absorption spectral analysis demonstrated that HutX binds heme with a 1:1 stoichiometry and a dissociation constant of 7.4 nM. The crystal structure of HutX displays a fold similar to that of the homologous protein, ChuX, from E. coli O157:H7. A structural comparison of HutX and ChuX, and resonance Raman spectra of heme-HutX, suggest that the axial ligand of the ferric heme is Tyr90. The heme bound to HutX is transferred to HutZ with biphasic dissociation kinetics of 8.3 × 10(-2) and 1.5 × 10(-2) s(-1), values distinctly larger than those for transfer from HutX to apomyoglobin. Surface plasmon resonance experiments confirmed that HutX interacts with HutZ with a dissociation constant of ∼400 µM. These results suggest that heme is transferred from HutX to HutZ via a specific protein-protein interaction. Therefore, we can conclude that HutX is a cytoplasmic heme transport protein for HutZ.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Hemeproteínas/metabolismo , Líquido Intracelular/metabolismo , Vibrio cholerae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Heme/química , Heme/genética , Heme/metabolismo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/química , Hemeproteínas/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Vibrio cholerae/genética , Difração de Raios X
3.
Proc Natl Acad Sci U S A ; 109(10): 3748-53, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22355137

RESUMO

Protein synthesis on the ribosome requires translational GTPase factors to bind to the ribosome in the GTP-bound form, take individual actions that are coupled with GTP hydrolysis, and dissociate, usually in the GDP-bound form. The multiple copies of the flexible ribosomal stalk protein play an important role in these processes. Using biochemical approaches and the stalk protein from a hyperthermophilic archaeon, Pyrococcus horikoshii, we here provide evidence that the conserved C terminus of the stalk protein aP1 binds directly to domain I of the elongation factor aEF-2, irrespective of whether aEF-2 is bound to GTP or GDP. Site-directed mutagenesis revealed that four hydrophobic amino acids at the C terminus of aP1, Leu-100, 103, 106, and Phe-107, are crucial for the direct binding. P1 was also found to bind to the initiation factor aIF5B, as well as aEF-1α, but not aIF2γ, via its C terminus. Moreover, analytical ultracentrifugation and gel mobility shift analyses showed that a heptameric complex of aP1 and aP0, aP0(aP1)(2)(aP1)(2)(aP1)(2), can bind multiple aEF-2 molecules simultaneously, which suggests that individual copies of the stalk protein are accessible to the factor. The functional significance of the C terminus of the stalk protein was also shown using the eukaryotic proteins P1/P2 and P0. It is likely that the conserved C terminus of the stalk proteins of archaea and eukaryotes can bind to translation factors both before and after GTP hydrolysis. This consistent binding ability of the stalk protein may contribute to maintaining high concentrations of translation factors around the ribosome, thus promoting translational efficiency.


Assuntos
Archaea/fisiologia , Biossíntese de Proteínas , Proteínas Ribossômicas/química , Ribossomos/metabolismo , Proteínas Arqueais/química , GTP Fosfo-Hidrolases/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Hidrólise , Espectrometria de Massas/métodos , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Pyrococcus horikoshii/metabolismo , Proteínas Ribossômicas/metabolismo , Ultracentrifugação
4.
Nat Struct Mol Biol ; 27(1): 25-32, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873307

RESUMO

The bacterial ribosome is recycled into subunits by two conserved proteins, elongation factor G (EF-G) and the ribosome recycling factor (RRF). The molecular basis for ribosome recycling by RRF and EF-G remains unclear. Here, we report the crystal structure of a posttermination Thermus thermophilus 70S ribosome complexed with EF-G, RRF and two transfer RNAs at a resolution of 3.5 Å. The deacylated tRNA in the peptidyl (P) site moves into a previously unsuspected state of binding (peptidyl/recycling, p/R) that is analogous to that seen during initiation. The terminal end of the p/R-tRNA forms nonfavorable contacts with the 50S subunit while RRF wedges next to central inter-subunit bridges, illuminating the active roles of tRNA and RRF in dissociation of ribosomal subunits. The structure uncovers a missing snapshot of tRNA as it transits between the P and exit (E) sites, providing insights into the mechanisms of ribosome recycling and tRNA translocation.


Assuntos
Proteínas de Bactérias/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Modelos Moleculares , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/metabolismo , Conformação Proteica , RNA de Transferência/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Ribossomos/química , Thermus thermophilus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA