RESUMO
OBJECTIVES: To establish a rapid, accurate, and sensitive multiplex PCR detection method for the simultaneous identification of the six common edible meats (beef, lamp, chicken, pork, goose, duck), and to evaluate its application value in meat adulteration identification. METHODS: Based on complete mitochondrial genomic sequences of six species in the GenBank database, DNA sequences (cattleï¼16S rRNA; sheepï¼COX-1; chickensï¼Cytb; pigï¼COX-1; gooseï¼NADH2; duckï¼16S rRNA) with intra-species conservation and inter-species specificity were screened, and species-specific primers were designed to construct a multiplex PCR detection system that can simultaneously detect the meat of six common species. The species specificity, sensitivity and reproducibility of the system were studied, and the simulated mixture sample detection was performed. RESULTS: This study successfully constructed a multiplex PCR detection system that can detect the meats of six common species simultaneously. The system was not effective in DNA amplification of non-target species. When the DNA template sizes were 0.062 5-2 ng/µL, the amplified products of all six species could be detected. The duck component was still detected when the mixing ratio of duck and beef was as low as 0.5%. CONCLUSIONS: This study constructs and establishes a multiplex PCR detection system with strong specificity, high sensitivity, and good reproducibility. It can accurately identify the components of animal origin in common edible meats and provide a simple and practical method for identifying adulteration of common edible meats and meat products in China.
Assuntos
Galinhas , Primers do DNA , Patos , Gansos , Carne , Reação em Cadeia da Polimerase Multiplex , Sensibilidade e Especificidade , Especificidade da Espécie , Animais , Reação em Cadeia da Polimerase Multiplex/métodos , Patos/genética , Reprodutibilidade dos Testes , Carne/análise , Ovinos , Suínos , Bovinos , RNA Ribossômico 16S/genética , Contaminação de Alimentos/análiseRESUMO
OBJECTIVES: To explore the feasibility of genetic marker detection of semen-specific coding region single nucleotide polymorphism (cSNP) based on SNaPshot technology in semen stains and mixed body fluid identification. METHODS: Genomic DNA (gDNA) and total RNA were extracted from 16 semen stains and 11 mixtures composed of semen and venous blood, and the total RNA was reverse transcribed into complementary DNA (cDNA). The cSNP genetic markers were screened on the validated semen-specific mRNA coding genes. The cSNP multiplex detection system based on SNaPshot technology was established, and samples were genotyped by capillary electrophoresis (CE). RESULTS: A multiplex detection system containing 5 semen-specific cSNPs was successfully established. In 16 semen samples, except the cSNP located in the TGM4 gene showed allele loss in cDNA detection results, the gDNA and cDNA typing results of other cSNPs were highly consistent. When detecting semen-venous blood mixtures, the results of cSNP typing detected were consistent with the genotype of semen donor and were not interfered by the genotype of venous blood donor. CONCLUSIONS: The method of semen-specific cSNPs detection by SNaPshot technology method can be applied to the genotyping of semen (stains) and provide information for determining the origin of semen in mixed body fluids (stains).
Assuntos
Líquidos Corporais , Sêmen , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , DNA Complementar/genética , RNA Mensageiro/genética , DNA , Saliva , Genética Forense/métodosRESUMO
OBJECTIVES: To explore the possibility of using human skin and oral microorganisms to estimate the geographic origin of an individual through the sequencing analysis of bacterial 16S rRNA gene. METHODS: Microbial DNA was extracted from the palm and oral microorganisms of the Han population in Shanghai and Chifeng, Inner Mongolia, and the composition and diversity of the microbiota were analyzed by full-length 16S rRNA gene sequencing. Then, differential species were screened and a geographic location prediction model was constructed. RESULTS: The compositions of palm and oral microorganisms between Shanghai and Chifeng samples were both different. The abundance and uniformity of palm side skin microorganisms were higher in Chifeng samples than in Shanghai samples, while there was no significant difference in oral microorganisms. Permutational multivariate analysis of variance (PERMANOVA) confirmed that the ß-diversity between the samples from the two places were statistically significant, and the coefficients of determination (R2) for skin and oral samples were 0.129 and 0.102, respectively. Through principal co-ordinates analysis (PCoA), the samples from the two places could be preliminarily distinguished. The predictive model had the accuracies of 0.90 and 0.83 for the geographic origin using the skin and oral samples, respectively. CONCLUSIONS: There are differences in the compositions of palm and oral microbiota between Han populations in Shanghai and Chifeng. The prediction model constructed by the random forest algorithm can trace the unknown individuals from the above two places.
Assuntos
Microbiota , Boca , Pele , Humanos , China , DNA Bacteriano/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Pele/microbiologia , Genética Forense , Sequenciamento de Nucleotídeos em Larga Escala , Boca/microbiologiaRESUMO
In forensic physical evidence identification, the accurate identification of the individual origin and their body fluid composition of the biological samples obtained from the crime scene play a critical role in determining the nature of a crime. In recent years, RNA profiling has become one of the fastest developing methods for body fluids identification. Due to the characteristics of tissue or body fluid specific expression, various types of RNA markers have been proven to be promising candidate markers for body fluids identification in previous studies. This review summarizes the research progress of RNA markers in body fluids identification, including the RNA markers that have been effectively verified in current research and their advantages and disadvantages. Meanwhile, this review prospects the application of RNA markers in forensic medicine.
Assuntos
Líquidos Corporais , Medicina Legal , Medicina Legal/métodos , Líquidos Corporais/química , RNA/genética , RNA/análise , Fezes , Genética Forense , Sêmen/química , Saliva/químicaRESUMO
OBJECTIVES: To construct a Felis catus STR loci multiplex amplification system and to evaluate its application value by testing the technical performance. METHODS: The published Felis catus STR loci data were reviewed and analyzed to select the STR loci and sex identification loci that could be used for Felis catus individual identification and genetic identification. The fluorescent labeling primers were designed to construct the multiplex amplification system. The system was validated for sensitivity, accuracy, balance, stability, species specificity, tissue identity and mixture analysis, and investigated the genetic polymorphisms in 145 unrelated Felis catus samples. RESULTS: Sixteen Felis catus autosomal STR loci and one sex determining region of Y (SRY) were successfully selected, and constructed a multiplex amplification system containing the above loci. The complete profile of all alleles could still be obtained when the amount of DNA template was as low as 0.25 ng. There was no specific amplification peak in other common animal samples. Population genetic surveys showed that total discrimination power (TDP) of the 16 STR loci was 1-3.57×10-20, the cumulative probability of exclusion (CPE) was 1-6.35×10-5 and the cumulative probability of matching was 3.61×10-20. CONCLUSIONS: The Felis catus STR multiplex amplification system constructed in this study is highly sensitive, species-specific, and accurate in typing results, which can provide an effective solution for Felis catus species identification, individual identification and kinship identification in the field of forensic science.
Assuntos
Cromossomos Humanos Y , Polimorfismo Genético , Alelos , Animais , Gatos/genética , Impressões Digitais de DNA/métodos , Primers do DNA , Humanos , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase/métodosRESUMO
In recent years, more and more forensic genetics laboratories have begun to apply massively parallel sequencing (MPS) technology, that is, next-generation sequencing (NGS) technology, to detect common forensic genetic markers, including short tandem repeat (STR), single nucleotide polymorphism (SNP), the control region or whole genome of mitochondrial DNA (mtDNA), as well as messenger RNA (mRNA), etc., for forensic practice, such as individual identification, kinship analysis, ancestry inference and body fluid identification. As the most widely used genetic marker in forensic genetics, STR is currently mainly detected by capillary electrophoresis (CE) platform. Compared with CE platform, MPS technology has the advantages of simultaneous detection of a large number of genetic markers, massively parallel detection of samples, the polymorphism of sequence detected by NGS makes STR have the advantages of higher resolution and system efficiency. However, MPS technology is expensive, there is no uniform standard so far, and there are problems such as how to integrate MPS-STR data with the existing CE-STR database. This review summarizes the current status of the application of MPS technology in the detection of STR genetic markers in forensic genetics, puts forward the main problems that need to be solved urgently, and prospects the application prospect of this technology in forensic genetics.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Impressões Digitais de DNA/métodos , Genética Forense/métodos , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , TecnologiaRESUMO
OBJECTIVES: To study the genetic polymorphism and population genetic parameters of 16 X-STR loci in Xinjiang Uygur population. METHODS: The Goldeneye® DNA identification system 17X was used to amplify 16 X-STR loci in 502 unrelated individuals (251 females and 251 males). The amplified products were detected by 3130xl genetic analyzer. Allele frequencies and population genetic parameters were analyzed statistically. The genetic distances between Uygur and other 8 populations were calculated. Multidimensional scaling and phylogenetic tree were constructed based on genetic distance. RESULTS: In the 16 X-STR loci, a total of 67 alleles were detected in 502 Xinjiang Uygur unrelated individuals. The allele frequencies ranged from 0.001 3 to 0.572 4. PIC ranged from 0.568 8 to 0.855 3. The cumulative discrimination power in females and males were 0.999 999 999 999 999 and 0.999 999 999 743 071, respectively. The cumulative mean paternity exclusion chance in trios and in duos were 0.999 999 997 791 859 and 0.999 998 989 000 730, respectively. The genetic distance between Uygur population and Kazakh population was closer, and the genetic distance between Uygur and Han population was farther. CONCLUSIONS: The 16 X-STR loci are highly polymorphic and suitable for identification in Uygur population, which can provide a powerful supplement for the study of individual identification, paternity identification and population genetics.
Assuntos
Cromossomos Humanos X , Etnicidade , Repetições de Microssatélites , Polimorfismo Genético , Feminino , Humanos , Masculino , DNA Ribossômico , Etnicidade/genética , Frequência do Gene , Paternidade , Filogenia , Cromossomos Humanos X/genéticaRESUMO
OBJECTIVES: To investigate the genetic polymorphism of InDel loci in SifalnDel 45plex system in the Han population in Jiangsu Province and the Mongolian population in Inner Mongolia, and to evaluate the effectiveness of the system in forensic medicine. METHODS: SifaInDel 45plex system was used for genotyping in blood samples of 398 unrelated individuals from the above two populations, and allele frequencies and population genetic parameters of the two populations were calculated respectively. Eight intercontinental populations in the gnomAD database were used as reference populations. The genetic distances between the two studied populations and eight reference populations were calculated based on the allele frequencies of 27 autosomal-InDels (A-InDels). The phylogenetic trees and multidimensional scaling (MDS) analysis diagrams were constructed accordingly. RESULTS: Among two studied populations, the 27 A-InDels and 16 X-InDels showed no linkage disequilibrium between each other and the allele frequency distributions were in Hardy-Weinberg equilibrium. The CDP of the 27 A-InDels in two studied populations were all higher than 0.999 999 999 9, and the CPEtrio were all less than 0.999 9. The CDP of the 16 X-InDels in Han in Jiangsu and Mongolian in Inner Mongolia female and male samples were 0.999 997 962, 0.999 998 389, and 0.999 818 940, 0.999 856 063, respectively. The CMECtrio were all less than 0.999 9. The results of population genetics showed that the Jiangsu Han nationality, Inner Mongolia Mongolian nationality and East Asian population clustered into one branch, showing closer genetic relationship. The other 7 intercontinental populations clustered into another group. And the above 3 populations displayed distant genetic relationships with the other 7 intercontinental populations. CONCLUSIONS: The InDels in the SifaInDel 45plex system have good genetic polymorphism in the two studied populations, which can be used for forensic individual identification or as an effective complement for paternity identification, and to distinguish different intercontinental populations.
Assuntos
Genética Populacional , Polimorfismo Genético , Humanos , Filogenia , Frequência do Gene , Povo Asiático/genética , China , Mutação INDELRESUMO
OBJECTIVES: To evaluate the ability of the ForenSeqTM DNA Signature Prep kit (ForenSeq kit) in analyzing the sequence information of STRs in Zhejiang She ethnic group and its forensic application efficacy. METHODS: A total of 50 Zhejiang She ethnic group samples were sequenced with the ForenSeq kit on the MiSeq FGx platform. The data was analyzed using ForenSeqTM universal analysis software to obtain the motif structure and flank regions of the 58 STRs, then compared with PCR-CE typing results to test the consistency. At last, the allele frequency and population genetic parameters were calculated. RESULTS: A total of 448 sequence polymorphic alleles were detected in 50 samples of Zhejiang She ethnic group. Compared with fragment length polymorphism detected by PCR-CE, 82 alleles were increased by MPS detection based on ForenSeq kit, and 7 SNPs variation were detected in the flanking regions of 6 loci. The 22 male individuals were genotyped, and total 19 haplotypes were detected in 24 Y chromosome STRs of these 22 males. The cumulative discrimination power of the 27 autosomal STRs was 1-8.87×10-30, the cumulative probability of exclusion of duo-testing was 0.999 999 962 640 657, the cumulative probability of exclusion of trios-testing was 0.999 999 999 999 633. CONCLUSIONS: Based on MPS typing technology, using the ForenSeq kit greatly improves the detection efficiency. In addition, the 58 STRs have good genetic polymorphisms in Zhejiang She ethnic group, which are suitable for individual identification and paternity identification in forensic application.