Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(19): 6803-6811, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126220

RESUMO

A printable, flexible display panel is an important trend in the field of information display, which requires better mechanical and electrical properties of device materials. Polymer-metal oxide composite materials are promising in the functional layer of a thin-film transistor (TFT) and can be sufficiently fabricated by polymer-metal salt solution systems through the sol-gel process. For the development of polymer-metal oxide composite ink, it is necessary to study the film-forming mechanism of the composite film during solidification, which is an important reference in ink component design. However, the evolution of the composite structure is quite complex, which brings a challenge to characterization and analyzation. We applied a series of characterization methods to study the film-forming process of composite ink from sol to gel and to solid, and an emerging testing technology, nano-infrared spectroscopy (nano-IR), was applied to characterize the gel film. The research conclusion showed that the type of functional group can significantly affect the morphology of the initial particle and can finally determine the microstructure of the composite film. The study provides references for the development of composite ink as well as the characterization method for ink and film with complex composition.

2.
Nanotechnology ; 32(33)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33910189

RESUMO

By adoption of a high permittivity ZrO2capping layer (ZOCL), enhanced ferroelectric properties were achieved in the Hf0.5Zr0.5O2(HZO) thin films. For HZO thin film with 10 Å ZOCL, the 2Prvalue can reach as high as ∼43.1µC cm-2under a sweep electric field of 3 MV cm-1. In addition, a reduced coercive field of 1.5 MV cm-1was observed, which is comparable to that of HZO with metallic CL. Furthermore, the homogeneity of ferroelectric orthorhombic phase in HZO films was observed to be clearly increased, as evidenced by nanoscale piezoelectric force microscopy measurements. These results demonstrate that ZOCL is very favorable for high performance ferroelectric HZO films and their future device applications.

3.
Soft Matter ; 14(46): 9402-9410, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30421779

RESUMO

Ultrashort channels of electrodes are essential for the construction of advanced functional devices with high-level integration and high operation speed. However, the channel length of fabricated electrodes is limited to 20 µm in inkjet printing. Although several methods have been previously proposed to obtain short channels, they require extra processing steps. In this paper, channel self-aligning phenomenon was observed in directly patterned electrodes on unmodified substrate by inkjet printing, when using an interspace defects growing method. Further exploring the underlying mechanism reveals that the capillary force induced air film prevents droplets coalescence, even on a substrate with no temperature differences. The wetting region, which is generated by the receding droplets impingement, will draw droplets closer together at a larger drop space, thus demanding smaller air pressure for coalescence inhibition and contributing to the self-aligning phenomenon of micro-sized droplets released by inkjet printing. Accordingly, an ultrashort channel of 2.38 µm is obtained with relatively smooth boundaries, when electrodes are printed on a slightly heated substrate, which reduces the air pressure between two neighboring droplets. This work will provide a significant reference for future high resolution applications of inkjet printing technology.

4.
Langmuir ; 33(34): 8455-8462, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28771362

RESUMO

A viable solution toward "green" optoelectronics is rooted in our ability to fabricate optoelectronics on transparent nanofibrillated cellulose (NFC) film substrates. However, the flammability of transparent NFC film poses a severe fire hazard in optoelectronic devices. Despite many efforts toward enhancing the fire-retardant features of transparent NFC film, making NFC film fire-retardant while maintaining its high transparency (≥90%) remains an ambitious objective. Herein, we combine NFC with NFC-dispersed monolayer clay nanoplatelets as a fire retardant to prepare highly transparent NFC-monolayer clay nanoplatelet hybrid films with a superb self-extinguishing behavior. Homogeneous and stable monolayer clay nanoplatelet dispersion was initially obtained by using NFC as a green dispersing agent with the assistance of ultrasonication and then used to blend with NFC to prepare highly transparent and self-extinguishing hybrid films by a water evaporation-induced self-assembly process. As the content of monolayer clay nanoplatelets increased from 5 wt % to 50 wt %, the obtained hybrid films presented enhanced self-extinguishing behavior (limiting oxygen index sharply increased from 21% to 96.5%) while retaining a ∼90% transparency at 600 nm. More significantly, the underlying mechanisms for the high transparency and excellent self-extinguishing behavior of these hybrid films with a clay nanoplatelet content of over 30 wt % were unveiled by a series of characterizations such as SEM, XRD, TGA, and limiting oxygen index tester. This work offers an alternative environmentally friendly, self-extinguishing, and highly transparent substrate to next-generation optoelectronics, and is aimed at providing a viable solution to environmental concerns that are caused by ever-increasing electronic waste.

5.
ACS Appl Mater Interfaces ; 16(15): 19271-19282, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591357

RESUMO

Inkjet printing artificial synapse is cost-effective but challenging in emulating synaptic dynamics with a sufficient number of effective weight states under ultralow voltage spiking operation. A synaptic transistor gated by inkjet-printed composite dielectric of polar-electret polyvinylpyrrolidone (PVP) and high-k zirconia oxide (ZrOx) is proposed and thus synthesized to solve this issue. Quasi-linear weight update with a large variation margin is obtained through the coupling effect and the facilitation of dipole orientation, which can be attributed to the orderly arranged molecule chains induced by the carefully designed microfluidic flows. Crucial features of biological synapses including long-term plasticity, spike-timing-dependence-plasticity (STDP), "Learning-Experience" behavior, and ultralow energy consumption (<10 fJ/pulse) are successfully implemented on the device. Simulation results exhibit an excellent image recognition accuracy (97.1%) after 15 training epochs, which is the highest for printed synaptic transistors. Moreover, the device sustained excellent endurance against bending tests with radius down to 8 mm. This work presents a very viable solution for constructing the futuristic flexible and low-cost neural systems.

6.
Micromachines (Basel) ; 13(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36014270

RESUMO

Even though electrochromism has been around for more than 50 years, it still has several issues. Multi-layered films, high manufacturing costs, and a short lifetime are present in existing electrochromic devices. We demonstrate a unique high-performance device with a basic structure and no solid electrochromic sheets in this work. In this device, the electrolyte layer is also avoided. The device uses an electrochromic solution prepared from a mixture of ammonium metatungstate and iron (II) chloride solution as a functional layer with reversible redox properties. The tungstate ions on the electrode surface are reduced when the device is colored, and the Fe2+ on the electrode surface is oxidized on another electrode surface. The generated Fe3+ in the mixed functional layer oxidizes the previously reduced tungstate ions as the device fades. We determined the ΔT (transmittance modulation) and response time among ammonium metatungstate ratios, iron (II) chloride ratios, and driven current density using DOE (design of experiment) trials. Using 0.175 mol/L ammonium metatungstate and 0.30 mol/L iron (II) chloride, a device with outstanding ΔT (more than 57% at 700 nm), a short response time (less than 10 s), and high coloring efficiency (160.04 cm2/C at 700 nm) is demonstrated.

7.
Nanomaterials (Basel) ; 12(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558211

RESUMO

The aspects of low processing temperature and easy running in oxygen atmosphere contribute to the potential of pulsed laser deposition (PLD) in developing a-IGZO TFTs for flexible applications. However, the realization of low-temperature and high-performance devices with determined strategies requires further exploration. In this work, the effect of oxygen pressure and post-annealing processes and their mechanisms on the performance evolution of a-IGZO TFTs by PLD were systematically studied. A room-temperature a-IGZO TFT with no hysteresis and excellent performances, including a µ of 17.19 cm2/V·s, an Ion/Ioff of 1.7 × 106, and a SS of 403.23 mV/decade, was prepared at the oxygen pressure of 0.5 Pa. Moreover, an O2 annealing atmosphere was confirmed effective for high-quality a-IGZO films deposited at high oxygen pressure (10 Pa), which demonstrates the critical effect of oxygen vacancies, rather than weak bonds, on the device's performance.

8.
Nat Commun ; 13(1): 1707, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361828

RESUMO

Nowadays the development of machine vision is oriented toward real-time applications such as autonomous driving. This demands a hardware solution with low latency, high energy efficiency, and good reliability. Here, we demonstrate a robust and self-powered in-sensor computing paradigm with a ferroelectric photosensor network (FE-PS-NET). The FE-PS-NET, constituted by ferroelectric photosensors (FE-PSs) with tunable photoresponsivities, is capable of simultaneously capturing and processing images. In each FE-PS, self-powered photovoltaic responses, modulated by remanent polarization of an epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 layer, show not only multiple nonvolatile levels but also sign reversibility, enabling the representation of a signed weight in a single device and hence reducing the hardware overhead for network construction. With multiple FE-PSs wired together, the FE-PS-NET acts on its own as an artificial neural network. In situ multiply-accumulate operation between an input image and a stored photoresponsivity matrix is demonstrated in the FE-PS-NET. Moreover, the FE-PS-NET is faultlessly competent for real-time image processing functionalities, including binary classification between 'X' and 'T' patterns with 100% accuracy and edge detection for an arrow sign with an F-Measure of 1 (under 365 nm ultraviolet light). This study highlights the great potential of ferroelectric photovoltaics as the hardware basis of real-time machine vision.

9.
ACS Appl Mater Interfaces ; 12(36): 40510-40517, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805812

RESUMO

A capping layer is known to be critical for stabilizing the ferroelectric (FE) orthorhombic phase (o-phase) in a HfO2-based thin film. Here, vanadium oxide (VOx), a functional oxide exhibiting the insulator-metal transition, is used as a novel type of a capping layer for the Hf0.5Zr0.5O2 (HZO) thin film. It is demonstrated that the VOx capping layer (VCL) can enhance the FE properties of the HZO thin film comprehensively. Specifically, the HZO thin film with a VCL shows large remanent polarization (2Pr ≈36.9 µC/cm2), relatively small coercive field (Ec ≈1.09 MV/cm), high endurance (up to 109 cycles), and long retention (>105 seconds). The enhanced FE properties may be attributed to the VCL-induced stabilization of the FE o-phase and suppression of oxygen vacancies at the interface. Furthermore, the HZO thin film with a VCL exhibits a successive rightward shift of polarization-voltage (P-V) hysteresis loop as the temperature increases. This is well correlated with the insulator-metal transition in a VCL, which can modulate the interfacial built-in field and thus cause the P-V loop shift. It is therefore demonstrated that a VCL not only enhances the FE properties of HZO thin films but also provides a temperature degree of freedom to modulate the FE properties, which may open up a new pathway to develop HfO2-based FE memories with high performance and novel functionalities.

10.
iScience ; 23(12): 101874, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33344918

RESUMO

Ferroelectric synapses using polarization switching (a purely electronic switching process) to induce analog conductance change have attracted considerable interest. Here, we propose ferroelectric photovoltaic (FePV) synapses that use polarization-controlled photocurrent as the readout and thus have no limitations on the forms and thicknesses of the constituent ferroelectric and electrode materials. This not only makes FePV synapses easy to fabricate but also reduces the depolarization effect and hence enhances the polarization controllability. As a proof-of-concept implementation, a Pt/Pb(Zr0.2Ti0.8)O3/LaNiO3 FePV synapse is facilely grown on a silicon substrate, which demonstrates continuous photovoltaic response modulation with good controllability (small nonlinearity and write noise) enabled by gradual polarization switching. Using photovoltaic response as synaptic weight, this device exhibits versatile synaptic functions including long-term potentiation/depression and spike-timing-dependent plasticity. A simulated FePV synapse-based neural network achieves high accuracies (>93%) for image recognition. This study paves a new way toward highly controllable and silicon-compatible synapses for neuromorphic computing.

11.
Nanomaterials (Basel) ; 9(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653004

RESUMO

Inkjet printing has been proved to be a powerful tool in the cost-effective ambient deposition of functional materials for the fabrication of electronic devices in the past decades. However, restricted by equipment and inks, the feature size of printed dots or lines with conventional inkjet printing is usually limited to several tens of micrometers, which could not fit the requirements for the fabrication of large-area, high-resolution microscale, even nanoscale, structures. Therefore, various technical means were developed for breaking the equipment limits. Here, we report a strategy for realizing ultrashort channels and homogeneous microstructures arrays by a conventional piezoelectric inkjet printing technique without any additional pre-mask process on the substrate. This strategy extends application of piezoelectric inkjet printing technique to biological and technological areas.

12.
Nanoscale Res Lett ; 13(1): 354, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30402729

RESUMO

We first verify the critical impact of evaporation on the formation of zigzag hollow cracks by regulating the drying micro-environment of silver nanoparticle film. Uneven evaporation and component segregation contributes to the flows along the surface and inside of droplets. Asymmetric vapor concentration distribution is capable of weakening the surface flow of droplets, thus suppressing the inner compressive stress of nanoparticles and leading to a surface morphology with less cracks. Although defect-free and surface smooth nanoparticle film deposited by a solution-based method remains a big challenge, our work has referential significance to optimize high-quality nanoparticle film with appropriate deposition and curing processes. Moreover, an optimization possibility through the drying micro-environment should be considered in high-end applications due to its enhanced effect on high-resolution patterns.

13.
Micromachines (Basel) ; 9(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30424310

RESUMO

Tungsten trioxide (WO3) is a wide band gap semiconductor material that is used as an important electrochromic layer in electrochromic devices. In this work, the effects of the annealing temperature on the optical band gap of sol-gel WO3 films were investigated. X-ray Diffraction (XRD) showed that WO3 films were amorphous after being annealed at 100 °C, 200 °C and 300 °C, respectively, but became crystallized at 400 °C and 500 °C. An atomic force microscope (AFM) showed that the crystalline WO3 films were rougher than the amorphous WO3 films (annealed at 200 °C and 300 °C). An ultraviolet spectrophotometer showed that the optical band gap of the WO3 films decreased from 3.62 eV to 3.30 eV with the increase in the annealing temperature. When the Li⁺ was injected into WO3 film in the electrochromic reaction, the optical band gap of the WO3 films decreased. The correlation between the optical band gap and the electrical properties of the WO3 films was found in the electrochromic test by analyzing the change in the response time and the current density. The decrease in the optical band gap demonstrates that the conductivity increases with the corresponding increase in the annealing temperature.

14.
ACS Appl Mater Interfaces ; 10(27): 22883-22888, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29939008

RESUMO

We first verify the critical role of solvent evaporation on the resolution of inkjet printing. To confirm our hypothesis, we adjusted the evaporation rate gradient along the surface of adjacent droplets by controlling the drying microenvironment. Uneven solvent evaporation flux caused thermocapillary surface flow inward the space of micrometer-sized droplets and increase the air pressure, which prevented the neighboring droplets from coalescence. When reducing the droplet distance by the solvent evaporation-based method, a uniform profile could be obtained at the same time. This work brings us a step closer to resolving one of the critical bottlenecks to commercializing printed electronic goods.

15.
Materials (Basel) ; 10(1)2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28772410

RESUMO

Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs with good electrical performance. In this paper, silver (Ag) source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm²·V-1·s-1 and an on/off current ratio of over 105. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance.

16.
Materials (Basel) ; 10(3)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28772579

RESUMO

Bottom-gate all-aluminum thin film transistors with multi conductor/insulator nanometer heterojunction were investigated in this article. Alumina (Al2O3) insulating layer was deposited on the surface of aluminum doping zinc oxide (AZO) conductive layer, as one AZO/Al2O3 heterojunction unit. The measurements of transmittance electronic microscopy (TEM) and X-ray reflectivity (XRR) revealed the smooth interfaces between ~2.2-nm-thick Al2O3 layers and ~2.7-nm-thick AZO layers. The devices were entirely composited by aluminiferous materials, that is, their gate and source/drain electrodes were respectively fabricated by aluminum neodymium alloy (Al:Nd) and pure Al, with Al2O3/AZO multilayered channel and AlOx:Nd gate dielectric layer. As a result, the all-aluminum TFT with two Al2O3/AZO heterojunction units exhibited a mobility of 2.47 cm²/V·s and an Ion/Ioff ratio of 106. All processes were carried out at room temperature, which created new possibilities for green displays industry by allowing for the devices fabricated on plastic-like substrates or papers, mainly using no toxic/rare materials.

17.
Nanoscale Res Lett ; 12(1): 546, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28948539

RESUMO

Inkjet-printed silver gate electrode with low electrical resistivity was fabricated by UV curing method. By adjusting the UV curing time and the distance between the samples and UV lamp, the effects of UV curing conditions on the electrical resistivity of the silver films were studied, and the lowest electrical resistivity of 6.69 × 10-8 Ω·m was obtained. Besides, the UV-cured silver films have good adhesion to the glass substrates, with adhesion strength of 4B (ASTM international standard). Our work offered an easy and low temperature approach to fabricate inkjet-printed silver electrodes with low electrical resistivity.

18.
J Colloid Interface Sci ; 487: 68-72, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27744171

RESUMO

The control of channel length is of great significance in the fabrication of thin film transistors (TFTs) with high-speed operation. However, achieving short channel on untreated glass by traditional piezoelectric inkjet printing is problematic due to the impacting and rebounding behaviors of droplet impinging on solid surface. Here a novel method was proposed to obtain short channel length on untreated glass by taking advantage of the difference in the retraction velocities on both sides of an ink droplet. In addition, droplets contact mechanism was first introduced in our work to explain the formation of short channel in the printing process. Through printing droplets array with optimized drop space and adjusting appropriate printing parameters, a 2.4µm of channel length for TFT, to the best of our knowledge, which is the shortest channel on substrate without pre-patterning, was achieved using piezoelectric inkjet printing. This study sheds light on the fabrication of short channel TFT for large size and high-resolution displays using inkjet printing technology.

19.
Materials (Basel) ; 9(8)2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28773743

RESUMO

We report a high-performance amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with new copper-chromium (Cu-Cr) alloy source/drain electrodes. The TFT shows a high mobility of 39.4 cm 2 ·V - 1 ·s - 1 a turn-on voltage of -0.8 V and a low subthreshold swing of 0.47 V/decade. Cu diffusion is suppressed because pre-annealing can protect a-IGZO from damage during the electrode sputtering and reduce the copper diffusion paths by making film denser. Due to the interaction of Cr with a-IGZO, the carrier concentration of a-IGZO, which is responsible for high mobility, rises.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA